Supplemental Tables

Tables are designed to supplement text in Jones, C., and Lenart, M. (2014). Forestry Professionals and Extension Educators vs. Climate Change: Implications for Cooperative Extension Programming. *Journal of Extension* [On-line]. Accepted.

Analysis of Variance tests were used to determine which means are significantly different from all others ($\alpha = 0.05$), with Tukey HSD applied to address multiple comparisons. Green shading indicates greater confidence or willingness, red shading indicates lack of confidence or willingness, and yellow indicates a slight confidence or willingness to learn more. The Roman numerals represent statistical subsets; if a category does not include the same numeral as a different category, that means the populations measured responses that were statistically significantly different from each other (alpha = 0.05). See table legend below for an explanation of the color coding. Questions are shown as they were described in the survey, including the bold formatting.

Table Legend.

Row/ Overall	Question	Professional	Professional	Professional	Professional	Professional
Mean		Category	Category	Category	Category	Category
1	Group Mean	.99	1.49	1.99	2.99	3.99
2.00	(Mean interval:	Red:	Yellow:	Chartreuse:	Light Green:	Dark Green:
(.01-3.00)	lower-upper bound)	(.0199)	(1.00-1.49)	(1.50-1.99)	(2.00-2.49)	(2.50-3.99)
n = 576	n = # of respondents	n= 124	n=74	n=78	n=38	n= 87
	I, II, etc: Statistical subset	1	1,11	<i>II, III</i>	III, IV	IV

Supplemental Table 1. Perceptions.

Listed below are responses indicating perceptions of climate change based on the level of confidence to each question asked. The mean for each group is given below regarding each question. Means were derived by averaging the responses, which ranged from:

- 0 = "not at all confident"
- 1 = "slightly confident"
- 2 = "confident"
- 3 = "very confident"
- 4 = "extremely confident"

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
1	How confident are you that	1.62	2.43	2.17	2.34	2.89	3.13
2.50	climate change is really	(1.40-1.84)	(2.13-2.74)	(1.88-2.45)	(2.02-2.66)	(2.62-3.15)	(2.96-3.30)
(2.39-2.61)	occurring?	n = 124	n = 74	n =78	<i>n</i> = 38	n = 87	n = 175
n = 576		1	II, III	<i>I,</i> II	II, III	III, IV	IV
2	How confident are you that	0.93	1.62	1.38	1.63	2.28	2.57
1.82	climate change is occurring	(0.71-1.16)	(1.28-1.95)	(1.07-1.70)	(1.22-2.05)	(1.97-2.58)	(2.35-2.79)
(1.70-1.95)	because of human	n = 123	n = 73	n = 78	n = 38	n = 87	n = 170
n = 569	activities that release	1	П	<i>I,</i> II	II, III	III, IV	IV
	greenhouse gases to the						
	atmosphere?						
3	How confident are you that	1.94	2.12	2.01	1.71	2.42	2.77
2.28	you have enough	(1.72-2.16)	(1.82-2.42)	(1.72-2.31)	(1.30-2.12)	(2.13-2.70)	(2.58-2.96)
(2.18-2.39)	information to form a valid	n = 123	n = 74	n =77	N = 38	n = 86	n = 174
n = 572	opinion whether climate	-1, 11	I, II	<i>I,</i> II	1	11, 111	III
	change is occurring?						
4	How confident are you that	.83	1.76	1.52	1.00	1.98	2.02
1.59	you have observed climate	(.62-1.05)	(1.43-2.10)	(1.19-0.85)	(0.58-1.42)	(1.67-2.28)	(1.79-2.25)
(1.46-1.71)	change or its impacts	n = 121	n = 68	n =73	n = 34	n = 83	n = 165
n = 544	firsthand?	1	111	<i>II, III</i>	<i>I,</i> II	111	111
5	How confident are you that	1.69	1.43	1.45	1.11	1.67	1.96
1.66	you know the right	(1.50-1.88)	(1.22-1.65)	(1.23-1.67)	(0.77-1.45)	(1.43-1.90)	(1.80-2.12)
(1.57-1.75)	questions to ask about	n=123	<i>n</i> =74	n=76	n =37	n =87	<i>n</i> =168
n=565	climate change?	-II, III	<i>I,</i> II	<i>I,</i> II	1	11, 111	111
6	How confident are you that	1.66	1.32	1.36	0.95	1.63	1.95
1.61	you know where to find	(1.45-1.87)	(1.09-1.56)	(<mark>1.12-1.59)</mark>	(0.61-1.28)	(1.37-1.88)	(1.76-2.13)
(1.51-1.71)	the necessary resources to	n=123	n=74	n=76	n=38	n=88	n=171
n=570	answer questions you have	<i>II, III</i>	<i>I, II</i>	<i>I,</i> II	1	II, III	111
	on climate change?						

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
7	How confident are you that	1.32	0.86	1.10	0.84	1.24	1.32
1.18	you know what mitigation	(1.11-1.53)	(0.64-1.09)	(.88-1.32)	(0.53-1.15)	(1.00-1.49)	(1.15-1.50)
(1.09-1.28)	actions to take regarding	n=107	n=72	n=71	n=38	n=86	<i>n</i> =168
n=542	climate change?	1	1	1	1	1	1
8	How confident are you	1.29	0.87	1.14	0.82	1.26	1.29
1.17	that you know what	(1.08-1.49)	(0.66-1.09)	(.89-1.39)	(0.52-1.11)	(1.01-1.50)	(1.12-1.46)
(1.08-1.26)	adaption actions to take	n=108	n=71	n =72	n =38	<i>n</i> =86	<i>n</i> =164
n=539	regarding climate change?	1	1	1	1	1	1

Supplemental Table 2. Climate Information Needs (Temperature and Precipitation Records).

Listed below are responses to questions how important is it to you to have more information on the following for your management area on climate change adaptation measures. Responses range from:

- 0 = "not at all important"
- 1 = "slightly important"
- 2 = "important"
- 3 = "very important"
- 4= "extremely important"

Row/ Overall Mean	Question	LM – Private company Mean	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
9 2.43 (2.33-2.54) n=410	How important is it to have more information on how water resources are likely to be affected in your management area?	2.00 (1.76-2.24) n=84 I	2.16 (1.89-2.44) n=55 I, II	2.65 (2.42-2.88) n=65 II	2.43 (2.07-2.79) n=28 I, II	2.65 (2.36-2.93) n=68 II	2.65 (2.46-2.83) n=110 II

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
10	How important is it to have	1.89	2.22	2.23	2.32	2.57	2.54
2.31	more information on the	(1.65-2.12)	(1.98-2.45)	(1.96-2.50)	(2.00-2.64)	(2.31-2.81)	(2.36-2.73)
(2.21-2.41)	climatic tolerance of	n=87	n=55	n=64	n=28	n=68	n=114
n=416	specific plant species of	1	-1, 11	1, 11	I, II	П	П
	interest to you?						
11	Records of changes in	1.80	2.00	2.09	2.08	2.25	2.45
2.14	average precipitation from	(1.58-2.02)	(1.74-2.26)	(1.85-2.33)	(1.78-2.38)	(2.01-2.49)	(2.28-2.62)
(2.05-2.24)	weather stations.	n=85	n=50	n=65	n=26	n=68	n=111
n=405		1	I, II	<i>I,</i> II	-1, 11	1, 11	П
12	Records of changes in	1.61	1.80	2.06	2.00	2.13	2.51
2.07	precipitation extremes	(1.39-1.84)	(1.53-2.06)	(1.81-2.31)	(1.68-2.32)	(1.87-2.39)	(2.32-2.71)
(1.96-2.17)	from weather stations.	n=85	n=49	n=64	n=26	n=69	n=111
n=404		1	1	1, 11	I, II	I, II	П
13	How important is it to have	1.66	2.13	1.83	2.04	2.28	2.25
2.03	more information on how	(1.43-1.88)	(1.88-2.38)	(1.56-2.10)	(1.73-2.34)	(2.02-2.55)	(2.05-2.45)
(1.93-2.14)	rising carbon dioxide levels	n=87	n=54	n=65	n=28	n=67	n=113
n=414	affect specific plant species	1	I, II	l, II	1, 11	П	П
	of interest to you?						
14	Records of changes in	1.61	1.67	2.05	1.85	2.22	2.42
2.03	types of precipitation from	(1.37-1.85)	(1.42-1.93)	(1.81-2.28)	(1.46-2.24)	(1.97-2.47)	(2.24-2.60)
(1.92-2.3)	weather stations.	n=85	n=49	n=64	n=26	n=68	n=107
n=399		1	1	I, II, III	I, II	II, III	III

Row/ Overall Mean	Question	LM – Private company	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
		wean					
15 2.00 (1.89-2.10) n=402	How important is it to have more information on the climatic tolerance of specific animal species of interest to you?	1.54 (1.31-1.77) n=84 I	2.00 (1.72-2.28) n=55 I, II	1.95 (1.70-2.20) n=63 I, II	2.00 (1.67-2.33) n=28 I, II	2.22 (1.94-2.50) n=68 II	2.24 (2.03-2.45) n=104 II
16 1.99 (1.89-2.10) n=404	How important is it to have more information on how elevation and other topographic influences affect the microclimate of your management area?	1.57 (1.33-1.82) n=84 I	1.70 (1.43-1.98) n=54 I, II	2.22 (1.96-2.48) n=63 II	2.04 (1.71-2.36) n=28 I, II	2.15 (1.90-2.39) n=68 II	2.22 (2.03-2.42) n=107 II
17 1.97 (1.87-2.08) n=408	Records of temperature extremes from weather stations.	1.47 (1.23-1.70) n=86 I	1.58 (1.29-1.87) n=50 I	1.97 (1.73-2.21) n=66 I, II, III	1.88 (1.58-2.19) n=26 I, II	2.13 (1.88-2.38) n=68 II, III	2.46 (2.28-2.65) n=112 III
18 1.93 (1.83-2.03) n=407	Records of monthly average temperature from weather stations.	1.41 (1.17-1.64) n=86 I	1.67 (1.40-1.93) n=51 I, II	1.94 (1.69-2.19) n=66 I, II, III	1.70 (1.40-2.01) n=27 I, II	2.18 (1.96-2.41) n=65 II, III	2.35 (2.16-2.54) n=112 III
19 1.74 (1.63-1.84) n=405	Projections of changes in average precipitation (monthly mean, seasonal changes) based on models.	1.21 (1.00-1.42) n=86 I	1.65 (1.36-1.94) n=51 I, II	1.69 (1.43-1.96) n=65 I, II	1.73 (1.38-2.08) n=26 I, II	1.90 (1.64-2.16) n=68 II	2.14 (1.93-2.34) n=109 II

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
20	Longer proxy records of	1.11	1.55	1.78	1.42	1.87	2.15
1.70	changes in precipitation	(.90-1.32)	(1.24-1.86)	(1.52-2.04)	(1.12-1.73)	(1.62-2.11)	(1.92-2.37)
(1.59-1.81)	extremes based on tree	n=83	n=49	n=63	n=26	n=67	n=109
n=397	rings, geomorphological	1	<i>I,</i> II	II, III	<i>I,</i> II	II, III	III
	evidence and other natural						
	archives.						
21	Longer proxy records of	1.12	1.52	1.70	1.44	1.97	2.08
1.69	changes in average	(.90-1.34)	(1.20-1.84)	(1.43-1.96)	(1.08-1.80)	(1.72-2.22)	(1.88-2.28)
(1.58-1.80)	precipitation from tree	n=83	n=48	n=63	n=25	n=67	n=110
n=396	rings, sediment cores and	1	I, II, III	II, III	<i>I,</i> II	II, III	III
	other natural archives.						
22	Projections of changes in	1.08	1.52	1.72	1.69	1.84	2.10
1.68	precipitation extremes	(.87-1.30)	(1.25-1.79)	(1.45-1.99)	(1.35-2.03)	(1.59-2.09)	(1.87-2.33)
(1.57-1.79)	(intensity and duration of	n=86	n=52	n=64	n=26	n=68	n=110
n=406	extreme events such as	1	1, II	П	П	ll –	П
	drought or flood) based on						
	models.						
23	Projections of	1.06	1.31	1.59	1.62	1.88	2.19
1.66	temperature extremes	(.84-1.27)	(1.06-1.57)	(1.31-1.87)	(1.25-1.98)	(1.61-2.15)	(1.97-2.40)
(1.55-1.77)	(highs, lows, heat waves,	n=86	n=51	n=66	n=26	n=67	n=112
n=408	frost/thaws) based on	1	<i>I, II</i>	1, II	1, 11, 111	11, 111	111
	models.						
24	Longer Proxy records of	1.06	1.52	1.71	1.23	1.87	2.10
1.65	temperature extremes	(.83-1.29)	(1.19-1.85)	(1.45-1.98)	(.90-1.56)	(1.62-2.11)	(1.87-2.33)
(1.54-1.77)	based on tree rings and	n=84	n=50	n=63	n=26	n=68	n=110
n=401	sediment cores and other	1	1, 11, 111	11, 111	I, II	III	III
	natural archives.						

Row/ Overall Mean	Question	LM – Private company Mean	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
25	Projections of changes in	1.12	1.32	1.81	1.50	1.78	2.08
1.65	types of precipitation (rain	(.89-1.34)	(1.07-1.57)	(1.53-2.09)	(1.12-1.88)	(1.50-2.05)	(1.85-2.32)
(1.53-1.76)	vs. snow, likelihood of hail)	n=86	n=50	n=63	n=26	n=67	n=107
n=399	based on models.	1	1, 11	11, 111	1, 11, 111	11, 111	111
26	Longer proxy records of	1.08	1.35	1.56	1.15	1.92	2.10
1.62	monthly average	(.86-1.31)	(1.06-1.65)	(1.31-1.82)	(.82-1.49)	(1.67-2.18)	(1.90-2.30)
(1.51-1.72)	temperature based on tree	n=85	n=48	n=64	n=26	n=65	n=110
n=398	rings, sediment cores and	1	<i>I, II</i>	1, 11, 111	1	11, 111	III
	natural archives.						
27	Projections of monthly	1.07	1.37	1.51	1.46	1.77	1.89
1.54	average temperature	(.86-1.28)	(1.14-1.59)	(1.25-1.76)	(1.13-1.79)	(1.53-2.01)	(1.69-2.10)
(1.44-1.64)	(mean, maximum,	n=87	n=52	n=65	n=26	n=65	n=111
n=406	minimum) based on	1	<i>I,</i> II	<i>I, II</i>	<i>I,</i> II	II	II
	models.						

Supplemental Table 3. Confidence in Climate Records.

Listed below are responses to questions regarding the amount of confidence the respondent has in various climate records. Responses range from:

- 0 = "not at all confident"
- 1 = "slightly confident"
- 2 = "confident"
- 3 = "very confident"
- 4 = "extremely confident"

Row/ Overall Mean	Question	LM – Private company Mean	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
28	Instrumental records of precipitation for the site of the weather station.	2.44	2.58	2.52	2.70	2.46	2.70
2.57		(2.23-2.65)	(2.33-2.82)	(2.30-2.75)	(2.34-3.06)	(2.23-2.70)	(2.53-2.86)
(2.48-2.66)		n=88	n=57	n=67	<i>n=30</i>	n=69	n=125
n=436		I	I	I	<i>l</i>	I	I
29	Instrumental records of temperature for the site of the weather stations.	2.28	2.44	2.58	2.67	2.42	2.77
2.54		(2.06-2.51)	(2.15-2.72)	(2.34-2.82)	(2.28-3.05)	(2.16-2.68)	(2.60-2.93)
(2.44-2.63)		n=88	n=57	n=67	n=30	n=69	n=124
n=435		I	I	I	I	I	I
30	Tree ring records of fire cycles.	2.09	2.27	2.40	2.47	2.59	2.50
2.38		(1.89-2.30)	(2.04-2.51)	(2.15-2.65)	(2.07-2.87)	(2.39-2.79)	(2.31-2.69)
(2.29-2.48)		n=88	n=51	n=65	n=30	n=66	n=124
n=424		I	I	I	I	I	I
31	Sediment records using	1.80	2.15	2.09	2.28	2.12	2.31
2.12	charcoal to identify	(1.59-2.00)	(1.90-2.41)	(1.86-2.32)	(1.84-2.72)	(1.85-2.38)	(2.12-2.49)
(2.02-2.21)	large wildfires from the	<i>n=84</i>	n=52	n=66	n=25	n=60	n=120
n=407	distant past.	/	I	I	I	I	I
32	Pollen records of past species distribution.	1.76	1.94	2.11	2.28	2.00	2.46
2.11		(1.54-1.97)	(1.67-2.21)	(1.89-2.32)	(1.94-2.61)	(1.77-2.23)	(2.29-2.63)
(2.02-2.21)		<i>n=86</i>	n=52	n=66	n=29	n=65	n=122
n=420		<i>I</i>	I, II	I, II, III	II, III	I, II, III	III

Row/ Overall Mean	Question	LM – Private company Mean	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
33	Ice core records of	1.55	2.12	1.85	2.17	2.07	2.40
2.04	carbon dioxide levels	(1.29-1.81)	(1.81-2.42)	(1.57-2.13)	(1.78-2.55)	(1.77-2.37)	(2.22-2.59)
(1.93-2.15)	(from air bubbles in the	n=78	n=52	n=60	n=24	n=60	n=114
n=388	cores).	I	I, II	I, II	II	I, II	II
34	Tree ring records of precipitation.	1.64	2.09	2.06	2.17	2.17	2.14
2.02		(1.43-1.85)	(1.84-2.34)	(1.82-2.30)	(1.85-2.49)	(1.94-2.41)	(1.97-2.31)
(1.93-2.12)		n=88	n=53	n=66	n=29	n=64	n=125
n=425		I	I, II	I, II	II	II	I, II
35	Ice core records of local temperature.	1.43	1.93	1.68	1.91	1.76	2.17
1.83		(1.18-1.69)	(1.61-2.25)	(1.42-1.94)	(1.50-2.32)	(1.48-2.05)	(1.98-2.37)
(1.72-1.94)		n=76	n=44	n=59	n=23	n=59	n=109
n=370		I	I, II	I, II	I, II	I, II	II
36 1.80 (1.68-1.92) n=346	Sediment records using oxygen isotopes to identify long-term temperature changes on the planet.	1.36 (1.11-1.61) n=72 I	2.09 (1.77-2.41) n=45 II	1.62 (1.30-1.94) n=50 I, II	1.90 (1.41-2.40) n=21 I, II	1.79 (1.46-2.12) n=52 I, II	2.06 (1.85-2.26) n=106 II

Row/ Overall Mean	Question	LM – Private company Mean	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
37 1.57 (1.46-1.68) n=401	Tree ring records of temperature.	1.20 (.97-1.44) n=84 I	1.41 (1.08173) n=49 I, II	1.52 (1.30-1.77) n=65 I, II	1.63 (1.16-2.09) n=24 I, II	1.67 (1.42-1.92) n=61 I, II	1.85 (1.64-2.05) n=118 II
38 1.53 (1.43-1.62) n=434	Instrumental records of temperature when weather station data are extrapolated to provide continuous values across the landscape.	1.30 (1.07-1.52) n=88 I	1.32 (1.05-1.59) n=57 I	1.42 (1.20-1.65) n=66 I, II	1.34 (1.04-1.65) n=29 I, II	1.59 (1.36-1.82) n=69 I, II	1.85 (1.68-2.02) n=125
39 1.51 (1.42-1.60) n=433	Instrumental records of precipitation when weather station data are extrapolated to provide continuous values across the landscape.	1.28 (1.06-1.49) n=87 I	1.35 (1.09-1.61) n=57 I	1.44 (1.21-1.67) n=66 I	1.31 (1.00-1.62) n=29 I	1.66 (1.45-1.87) n=68 I	1.75 (1.56-1.93) n=126 I
40 1.21 (1.10-1.33) n=353	Tree ring records of streamflow.	.84 (.61-1.06) n=74 I	1.10 (.75-1.45) n=41 I	1.07 (.79-1.36) n=56 I	1.24 (.81-1.67) n=21 I	1.43 (1.14-1.71) n=54 I	1.48 (1.25-1.70) n=107 I

Supplemental Table 4. Adaptation.

Listed below are responses to questions on climate change adaptation measures. Responses range from:

- 0 = "not at all willing"
- 1 = "willing to learn more about it"
- 2 = "willing"
- 3 = "very willing"
- 4 = "extremely willing"

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
41	Thin trees out of overly	3.29	3.13	3.56	3.19	3.20	3.14
3.25	dense forests to reduce	(3.12-3.46)	(2.91-3.35)	(3.40-3.72)	(2.83-3.55)	(2.99-3.41)	(2.95-3.32)
(3.16-3.33)	the risk of large-scale stand	n=111	n=70	n=75	n=36	n=74	n=139
n=505	mortality from drought	1	1	1	1	1	1
	and/or wildfire						
42	Conduct prescribed burns	2.58	2.40	3.47	2.73	3.00	3.07
2.90	in forests in an effort to	(2.34-2.83)	(2.11-2.70)	(3.28-3.65)	(2.41-3.05)	(2.76-3.24)	(2.91-3.24)
(2.80-3.00)	restore or retain natural	n=110	n=62	n=75	n=37	n=70	n=141
n=495	fire cycles	1,11	1	111	1, II	11, 111	II, III
43	Conduct rapid removal	2.25	2.23	2.44	2.54	2.59	2.47
2.41	programs on newly	(2.03-2.48)	(1.99-2.46)	(2.20-2.67)	(2.18-2.91)	(2.30-2.87)	(2.28-2.66)
(2.31-2.51)	detected species	n=110	n=71	n=73	n=35	n=75	n=140
n=504	considered invasive	1	1	1	1	1	1
44	Foster connected	2.06	2.08	2.28	2.54	2.54	2.79
2.40	landscapes, such as by	(1.83-2.29)	(1.79-2.38)	(2.00-2.56)	(2.16-2.92)	(2.28-2.80)	(2.60-2.98)
(2.30-2.51)	retaining or gaining	n=113	n=71	n=72	n=37	n=81	n=139
n=513	protection of riparian	1	1	1, 11	-1, 11	I, II	П
	zones, to promote the						
	natural migration of						
	species						

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
45	Create early-detection	2.12	2.25	2.33	2.37	2.65	2.52
2.38	programs to detect new	(1.91-2.34)	(2.00-2.51)	(2.05-2.62)	(2.00-2.74)	(2.39-2.92)	(2.33-2.72)
(2.28-2.48)	invasions of undesired	n=113	n=71	n=72	n=35	n=75	n=134
n=509	exotic species	1	1	1	1	1	1
46	Construct fire breaks in	2.14	2.22	2.58	2.09	2.43	2.43
2.34	key areas	(1.87-2.41)	(1.95-2.50)	(2.33-2.82)	(1.73-2.45)	(2.14-2.72)	(2.22-2.63)
(2.23-2.45)		n=99	n=63	n=69	n=33	n=67	n=134
n=465		1	1	1	1	1	1
47	Enlarge management areas	1.86	2.01	2.19	2.32	2.43	2.58
2.25	or otherwise lower	(1.63-2.10)	(1.70-2.33)	(1.90-2.48)	(1.91-2.74)	(2.17-2.70)	(2.39-2.78)
(2.14-2.36)	fragmentation of the	n=111	n=70	n=74	n=37	n=81	n=139
n=512	landscape to promote the	1	1, 11	1, 11	1, 11	1, 11	11
	preservation of species						
48	Create local refugia for	1.43	1.65	1.85	1.55	1.86	2.06
1.77	endangered species	(1.20-1.65)	(1.35-1.94)	(1.57-2.13)	(1.26-1.83)	(1.59-2.12)	(1.87-2.25)
(1.66-1.87)		n=110	n=68	n=72	n=33	n=76	n=136
n=495		1	I, II	I, II	<i>I,</i> II	<i>I,</i> II	П
49	Consider adopting	1.23	1.31	1.73	1.53	1.63	2.26
1.68	management practices even	(1.06-1.39)	(1.05-1.58)	(1.48-1.99)	(1.24-1.81)	(1.41-1.84)	(2.10-2.43)
(1.59-1.77)	if they have a high level of	n=110	n=70	n=71	n=36	n=80	n=141
n=508	uncertainty in some	1	<i>I,</i> II	11	<i>I, II</i>	<i>I, II</i>	111
	situations so that they could						
	serve as experimental						
	efforts						

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
50	Augment endangered	1.28	1.62	1.67	1.45	1.73	1.98
1.65	species populations via	(1.07-1.48)	(1.35-1.89)	(1.41-1.93)	(1.13-1.78)	(1.47-2.00)	(1.78-2.18)
(1.55-1.75)	introduction of captive-	n=111	n=71	n=67	n=31	n=71	n=134
n=485	bred animals into the local	1	I, II	1, 11	I, II	I, II	ll –
	area where they already						
	exist.						
51	Allow the invasion of	1.35	1.44	1.50	1.39	1.64	1.77
1.55	"neo-native" species – in	(1.17-1.53)	(1.19-1.69)	(1.25-1.75)	(1.14-1.64)	(1.40-1.88)	(1.60-1.95)
(1.46-1.64)	effect, those that seem	n=106	n=68	n=70	n=36	n=75	n=136
n=491	likely to be suited to	1	1	1	1	1	1
	changing climate						
	conditions						
52	Relax genetic	1.34	1.58	1.44	1.15	1.40	1.83
1.52	management guidelines to	(1.17-1.51)	(1.31-1.85)	(1.20-1.69)	(.97-1.33)	(1.22-1.58)	(1.65-2.00)
(1.43-1.60)	include the option of	n=112	n=67	n=72	n=33	n=75	n=134
n=493	augmenting genetic	1	1,11	I, II	1	I, II	П
	diversity by collecting from						
	adjacent seed zones or						
	populations for restoration						
	projects						
53	Stock soils with seeds from	1.27	1.54	1.40	1.33	1.53	1.80
1.51	plants outside of the	(1.11-1.44)	(1.30-1.77)	(1.15-1.65)	(1.08-1.59)	(1.33-1.74)	(1.62-1.98)
(1.43-1.60)	standard range (i.e., those	n=113	n=69	n=73	n=36	n=79	n=137
n=507	from environments	1	<i>I, II</i>	1, 11	1	1, 11	11
	suitable to future climate)						
	 using different 						
	genotypes of the same						
	species that exist locally						

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
54	Make an effort to use	1.16	1.42	1.54	1.30	1.42	1.79
1.47	redundancy (such as also	(1.01-1.31)	(1.19-1.65)	(1.31-1.77)	(1.02-1.59)	(1.22-1.61)	(1.63-1.95)
(1.39-1.56)	planting on sites that are	n=112	n=71	n=74	n=33	n=77	n=138
n=505	historically non-optimal for	1	<i>I,</i> II	<i>I, II</i>	1	<i>I,</i> II	II
	a specific species or						
	community) when						
	restoring a site following						
	disturbance						
55	Promote the expansion –	1.18	1.36	1.39	1.31	1.41	1.58
1.39	following major	(1.02-1.35)	(1.14-1.58)	(1.19-1.59)	(1.07-1.56)	(1.23-1.59)	(1.41-1.75)
(1.31-1.47)	disturbance – of plants or	n=109	n=72	n=74	n=35	n=78	n=137
n=505	animals into different	1	1	1	1	1	1
	locations that may be						
	climatically suitable for						
	them						
56	Consider " re-aligning " the	1.32	1.25	1.31	1.37	1.37	1.59
1.39	system with different	(1.15-1.49)	(1.05-1.45)	(1.09-1.52)	(1.13-1.61)	(1.20-1.55)	(1.42-1.76)
(1.31-1.47)	species if it has been	n=110	n=72	n=72	n=35	n=78	n=135
n=502	pushed too far out of	1	1	1	1	1	1
	historic conditions –						
	whether by manipulation						
	or disturbance – when						
	considering restoration						
57	Promote the expansion of	.98	1.25	1.24	1.22	1.34	1.58
1.29	endangered species	(.80-1.16)	(1.03-1.47)	(1.03-1.46)	(.93-1.50)	(1.14-1.54)	(1.41-1.76)
(1.21-1.38)	populations by introducing	n=108	n=72	n=70	n=32	n=76	n=137
n=495	animals into a new area	1	<i>I, II</i>	<i>I, II</i>	<i>I, II</i>	<i>I, II</i>	11
	deemed suitable for them						
	because of changed						
	climate						

Row/ Overall Mean	Question	LM – Private company Mean	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
58	Stock soils with seeds from	.96	1.15	1.05	1.00	1.14	1.28
1.12	plants outside of the	(.81-1.12)	(.94-1.37)	(.84-1.27)	(.78-1.22)	(.94-1.34)	(1.10-1.45)
(1.04-1.20)	standard range (i.e., from	n=112	n=71	n=73	n=35	n=76	n=136
n=503	environments more	1	1	1	1	1	1
	suitable to future climate)						
	 using species that do not 						
	currently occur in the local						
	area						

Supplemental Table 5. Mitigation.

Listed below are responses to questions on climate change adaptation measures. Responses range from:

- 0 = "not at all willing"
- 1 = "willing to learn more about it"
- 2 = "willing"
- 3 = "very willing"
- 4 = "extremely willing"

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
59	Thinning overly dense	3.45	3.26	3.56	3.14	3.22	3.15
3.30	stands to reduce the risk of	(3.32-3.58)	(3.08-3.44)	(3.42-3.71)	(2.78-3.50)	(2.99-3.45)	(2.98-3.32)
(3.22-3.38)	severe fire or stand-	n=115	n=70	n=73	n=36	n=77	n=141
n=512	destroying disturbance	-1, 11	1, II	П	1	1, 11	1, 11
60	Using forest biomass to	2.83	2.74	3.08	2.54	2.78	2.76
2.81	produce energy when	(2.66-3.01)	(2.48-3.00)	(2.87-3.29)	(2.18-2.91)	(2.54-3.02)	(2.58-2.93)
(2.72-2.90)	appropriate	n=115	n=69	n=73	n=35	n=81	n=143
n=516		-1, 11	1, II	П	1	I, II	1, 11
61	Change your personal	1.77	2.14	2.18	2.03	2.54	2.84
2.31	energy-consumption	(1.51-2.04)	(1.87-2.41)	(1.87-2.49)	(1.64-2.42)	(2.24-2.83)	(2.65-3.03)
(2.20-2.43)	habits to reduce your	n=114	n=72	n=73	n=36	n=84	n=143
n=522	carbon footprint	1	<i>I, II</i>	<i>I,</i> II	<i>I,</i> II	II, III	III
62	Enhance carbon	1.89	2.33	2.06	1.83	2.33	2.49
2.20	sequestration in wood and	(1.65-2.13)	(2.07-2.60)	(1.76-2.35)	(1.50-2.16)	(2.06-2.60)	(2.31-2.67)
(2.10-2.31)	aboveground biomass	n=114	n=69	n=72	n=36	n=76	n=143
n=510	0	1	1, 11	1, 11	1	1, 11	II
				·		·	
63	Retain carbon stored in	1.73	2.26	1.73	1.83	2.31	2.51
2.12	natural resources (wood,	(1.50-1.96)	(1.95-2.57)	(1.44-2.03)	(1.41-2.25)	(2.05-2.59)	(2.31-2.70)
(2.01-2.23)	fiber, soil) by protecting	n=112	n=69	n=71	n=35	n=75	n=140
n=502	existing conservation	1	1, 11	1	1	1, 11	11
<u> </u>	areas	4.65	2.00	2.07	4.70	2.45	2.44
64	Ennance carbon	1.65	2.00	2.07	1./6	2.15	2.44
2.06	sequestration in solis and	(1.43-1.88)	(1.73-2.27)	(1.80-2.34)	(1.43-2.10)	(1.89-2.41)	(2.25-2.63)
(1.96-2.16)	pelowground biomass	n=113	n=69	n=72	n=34	n=75	n=138
n=501		1	1, 11	1, 11	1	1, 11	П

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
65	Retain carbon stored in	1.16	1.76	1.20	1.39	2.00	2.25
1.70	natural resources (wood,	(.92-1.40)	(1.43-2.09)	(.94-1.46)	(.97-1.82)	(1.72-2.28)	(2.04-2.47)
(1.58-1.81)	fiber, soil) by designating	n=110	n=67	n=71	n=33	n=74	n=139
n=494	additional conservation	1	1, 11, 111	1	1, 11	-11, 111	111
	areas						
66	Speed rotation of timber	1.65	1.46	1.60	1.42	1.58	1.57
1.57	harvesting in order to	(1.42-1.87)	(1.23-1.69)	(1.35-1.85)	(1.06-1.77)	(1.35-1.82)	(1.38-1.76)
(1.47-1.66)	promote the transfer of	n=116	n=70	n=73	n=36	n=79	n=141
n=515	carbon into forest products	1	1	1	1	1	1
67	Consider manipulating	1.10	1.44	1.25	1.11	1.30	1.52
1.31	local species within a forest	(.94-1.27)	(1.22-1.65)	(1.02-1.49)	(.85-1.38)	(1.08-1.52)	(1.36-1.68)
(1.23-1.40)	stand to favor species that	n=115	n=71	n=71	n=36	n=80	n=139
n=512	promote carbon	1	1	1	1	1	1
	sequestration						
68	Enhance carbon	1.01	1.10	1.06	1.11	1.34	1.24
1.15	sequestration by planting	(.86-1.16)	(.95-1.25)	(.87-1.24)	(.90-1.32)	(1.15-1.53)	(1.09-1.38)
(1.08-1.22)	"neo-native" species	n=109	n=70	n=72	n=36	n=79	n=139
n=505	expected to thrive because	1	1	1	1	1	1
	of climate change						
69	Allow or promote woody	1.12	1.09	.74	.70	1.05	.99
.99	invasion of grasslands to	(.94-1.31)	(.86-1.33)	(.5295)	(.40-1.00)	(.84-1.27)	(.82-1.15)
(.90-1.07)	enhance carbon	n=107	n=64	n=68	n=33	n=79	n=136
n=487	sequestration in local	1	1	1	1	1	1
	locations where carbon						
	storage increases with						
	woody invasions						

Row/ Overall Mean	Question	LM – Private company	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
	- - - - - - - - - -	wean				1.00	
70	Purchase carbon "credits"	.54	.76	.67	.57	1.06	1.26
.88	to help offset your	(.3870)	(.54-1.04)	(.4688)	(.3876)	(.78-1.34)	(1.06-1.46)
(.7998)	personal carbon footprint	n=106	n=67	n=70	n=35	n=80	n=143
n=501		1	I, II, III	I, II	I, II	II, III	<i>III</i>
71	Enhance carbon	.66	.69	.38	.39	.77	.64
.62	sequestration in forests by	(.5280)	(.5187)	(.2453)	(.1959)	(.5896)	(.5177)
(.5568)	planting exotic species	n=115	n=70	n=73	n=36	n=79	n=139
n=512		1, 11	1, 11	1	1	11	1, 11
72	Overlook issues such as	.39	.48	.54	.28	.42	.44
.44	biodiversity and habitat	(.2851)	(.3562)	(.3277)	(.1243)	(.2955)	(.3356)
(.3849)	value to promote carbon	n=112	n=66	n=72	n=36	n=83	n=132
n=507	sequestration	1	1	1	1	1	1