Supplemental Tables

Tables are designed to supplement text in Jones, C., and Lenart, M. (2014). Forestry Professionals and Extension Educators vs. Climate Change: Implications for Cooperative Extension Programming. Journal of Extension [On-line]. Accepted.

Analysis of Variance tests were used to determine which means are significantly different from all others ($\alpha=0.05$), with Tukey HSD applied to address multiple comparisons. Green shading indicates greater confidence or willingness, red shading indicates lack of confidence or willingness, and yellow indicates a slight confidence or willingness to learn more. The Roman numerals represent statistical subsets; if a category does not include the same numeral as a different category, that means the populations measured responses that were statistically significantly different from each other (alpha $=0.05$). See table legend below for an explanation of the color coding. Questions are shown as they were described in the survey, including the bold formatting.

Table Legend.

Row/ Overall Mean	Question	Professional Category				
$\begin{aligned} & \mathbf{1} \\ & 2.00 \\ & (.01-3.00) \\ & n=576 \end{aligned}$	Group Mean (Mean interval: lower-upper bound) $n=$ \# of respondents I, II, etc: Statistical subset	$\begin{aligned} & .99 \\ & \text { Red: } \\ & \text { (.01-.99) } \\ & n=124 \\ & 1 \end{aligned}$	1.49 Yellow: $\begin{aligned} & (1.00-1.49) \\ & n=74 \end{aligned}$ I,II	1.99 Chartreuse: $\begin{aligned} & \text { (1.50-1.99) } \\ & n=78 \\ & \text { II, III } \end{aligned}$	2.99 Light Green: $\begin{aligned} & \text { (2.00-2.49) } \\ & n=38 \\ & \text { III, IV } \end{aligned}$	3.99 Dark Green: (2.50-3.99) $\mathrm{n}=87$ IV

Supplemental Table 5. Mitigation.

Listed below are responses to questions on climate change adaptation measures. Responses range from:

- $0=$ "not at all willing"
- $1=$ "willing to learn more about it "
- $2=$ "willing"
- $3=$ "very willing"
- $4=$ "extremely willing"

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean	
$\begin{aligned} & \hline 59 \\ & 3.30 \\ & (3.22-3.38) \\ & n=512 \\ & \hline \end{aligned}$	Thinning overly dense stands to reduce the risk of severe fire or standdestroying disturbance	$\begin{aligned} & \hline 3.45 \\ & (3.32-3.58) \\ & n=115 \\ & 1, I I \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.26 \\ & (3.08-3.44) \\ & n=70 \\ & 1, I I \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.56 \\ & (3.42-3.71) \\ & n=73 \\ & \text { II } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.14 \\ & (2.78-3.50) \\ & n=36 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 3.22 \\ & (2.99-3.45) \\ & n=77 \\ & 1, I I \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.15 \\ & (2.98-3.32) \\ & n=141 \\ & 1, I I \\ & \hline \end{aligned}$	
$\begin{aligned} & 60 \\ & 2.81 \\ & (2.72-2.90) \\ & n=516 \end{aligned}$	Using forest biomass to produce energy when appropriate	$\begin{aligned} & 2.83 \\ & (2.66-3.01) \\ & n=115 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.74 \\ & (2.48-3.00) \\ & n=69 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 3.08 \\ & \text { (2.87-3.29) } \\ & n=73 \\ & \text { II } \end{aligned}$	$\begin{aligned} & 2.54 \\ & (2.18-2.91) \\ & n=35 \\ & I \end{aligned}$	$\begin{aligned} & 2.78 \\ & (2.54-3.02) \\ & n=81 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.76 \\ & (2.58-2.93) \\ & n=143 \\ & I, I I \end{aligned}$	
$\begin{aligned} & 61 \\ & 2.31 \\ & (2.20-2.43) \\ & n=522 \end{aligned}$	Change your personal energy-consumption habits to reduce your carbon footprint	$\begin{aligned} & 1.77 \\ & (1.51-2.04) \\ & n=114 \\ & I \end{aligned}$	$\begin{aligned} & 2.14 \\ & (1.87-2.41) \\ & n=72 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.18 \\ & (1.87-2.49) \\ & n=73 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.03 \\ & (1.64-2.42) \\ & n=36 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.54 \\ & \text { (2.24-2.83) } \\ & n=84 \\ & \text { II, III } \end{aligned}$	$\begin{aligned} & 2.84 \\ & (2.65-3.03) \\ & n=143 \\ & \text { III } \end{aligned}$	
$\begin{aligned} & 62 \\ & 2.20 \\ & (2.10-2.31) \\ & n=510 \end{aligned}$	Enhance carbon sequestration in wood and aboveground biomass	$\begin{aligned} & 1.89 \\ & (1.65-2.13) \\ & n=114 \\ & I \end{aligned}$	$\begin{aligned} & 2.33 \\ & (2.07-2.60) \\ & n=69 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.06 \\ & (1.76-2.35) \\ & n=72 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.83 \\ & (1.50-2.16) \\ & n=36 \\ & l \end{aligned}$	$\begin{aligned} & 2.33 \\ & (2.06-2.60) \\ & n=76 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.49 \\ & (2.31-2.67) \\ & n=143 \\ & I I \end{aligned}$	
$\begin{aligned} & 63 \\ & 2.12 \\ & \text { (2.01-2.23) } \\ & n=502 \end{aligned}$	Retain carbon stored in natural resources (wood, fiber, soil) by protecting existing conservation areas	$\begin{aligned} & 1.73 \\ & (1.50-1.96) \\ & n=112 \\ & I \end{aligned}$	$\begin{aligned} & \hline 2.26 \\ & (1.95-2.57) \\ & n=69 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.73 \\ & (1.44-2.03) \\ & n=71 \\ & I \end{aligned}$	$\begin{aligned} & 1.83 \\ & (1.41-2.25) \\ & n=35 \\ & I \end{aligned}$	$\begin{aligned} & 2.31 \\ & \text { (2.05-2.59) } \\ & n=75 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.51 \\ & (2.31-2.70) \\ & n=140 \\ & \\| \end{aligned}$	
$\begin{aligned} & \hline 64 \\ & 2.06 \\ & (1.96-2.16) \\ & n=501 \end{aligned}$	Enhance carbon sequestration in soils and belowground biomass	$\begin{aligned} & \hline 1.65 \\ & (1.43-1.88) \\ & n=113 \\ & I \end{aligned}$	$\begin{aligned} & \hline 2.00 \\ & (1.73-2.27) \\ & n=69 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.07 \\ & (1.80-2.34) \\ & n=72 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.76 \\ & (1.43-2.10) \\ & n=34 \\ & I \end{aligned}$	$\begin{aligned} & \hline 2.15 \\ & (1.89-2.41) \\ & n=75 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.44 \\ & (2.25-2.63) \\ & n=138 \\ & I \prime \end{aligned}$	

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
$\begin{aligned} & 65 \\ & 1.70 \\ & (1.58-1.81) \\ & n=494 \end{aligned}$	Retain carbon stored in natural resources (wood, fiber, soil) by designating additional conservation areas	$\begin{aligned} & 1.16 \\ & (.92-1.40) \\ & n=110 \\ & l \end{aligned}$	$\begin{aligned} & 1.76 \\ & \text { (1.43-2.09) } \\ & n=67 \\ & I, I I, I I I \end{aligned}$	$\begin{aligned} & 1.20 \\ & (.94-1.46) \\ & n=71 \\ & I \end{aligned}$	$\begin{aligned} & 1.39 \\ & (.97-1.82) \\ & n=33 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.00 \\ & (1.72-2.28) \\ & n=74 \\ & I I, I I I \end{aligned}$	$\begin{aligned} & 2.25 \\ & \text { (2.04-2.47) } \\ & n=139 \\ & \text { III } \end{aligned}$
$\begin{aligned} & \hline 66 \\ & 1.57 \\ & (1.47-1.66) \\ & n=515 \end{aligned}$	Speed rotation of timber harvesting in order to promote the transfer of carbon into forest products	$\begin{aligned} & 1.65 \\ & (1.42-1.87) \\ & n=116 \\ & I \end{aligned}$	$\begin{aligned} & 1.46 \\ & (1.23-1.69) \\ & n=70 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.60 \\ & (1.35-1.85) \\ & n=73 \\ & I \end{aligned}$	$\begin{aligned} & 1.42 \\ & (1.06-1.77) \\ & n=36 \\ & l \end{aligned}$	$\begin{aligned} & 1.58 \\ & (1.35-1.82) \\ & n=79 \\ & l \end{aligned}$	$\begin{aligned} & 1.57 \\ & (1.38-1.76) \\ & n=141 \\ & ! \end{aligned}$
$\begin{aligned} & \hline 67 \\ & 1.31 \\ & (1.23-1.40) \\ & n=512 \end{aligned}$	Consider manipulating local species within a forest stand to favor species that promote carbon sequestration	$\begin{array}{\|l\|} \hline 1.10 \\ (.94-1.27) \\ n=115 \\ l \end{array}$	$\begin{array}{\|l\|} \hline 1.44 \\ (1.22-1.65) \\ n=71 \\ I \end{array}$	$\begin{aligned} & \hline 1.25 \\ & (1.02-1.49) \\ & n=71 \\ & I \end{aligned}$	$\begin{aligned} & 1.11 \\ & (.85-1.38) \\ & n=36 \\ & l \end{aligned}$	$\begin{aligned} & 1.30 \\ & (1.08-1.52) \\ & n=80 \\ & l \end{aligned}$	$\begin{aligned} & 1.52 \\ & (1.36-1.68) \\ & n=139 \\ & l \end{aligned}$
$\begin{aligned} & \hline 68 \\ & 1.15 \\ & (1.08-1.22) \\ & n=505 \end{aligned}$	Enhance carbon sequestration by planting "neo-native" species expected to thrive because of climate change	$\begin{aligned} & 1.01 \\ & (.86-1.16) \\ & n=109 \\ & l \end{aligned}$	$\begin{array}{\|l} 1.10 \\ (.95-1.25) \\ n=70 \\ l \end{array}$	$\begin{aligned} & 1.06 \\ & (.87-1.24) \\ & n=72 \\ & l \end{aligned}$	$\begin{aligned} & 1.11 \\ & (.90-1.32) \\ & n=36 \\ & l \end{aligned}$	$\begin{aligned} & \hline 1.34 \\ & (1.15-1.53) \\ & n=79 \\ & I \end{aligned}$	$\begin{aligned} & 1.24 \\ & \text { (1.09-1.38) } \\ & n=139 \\ & I \end{aligned}$
$\begin{aligned} & \hline 69 \\ & .99 \\ & (.90-1.07) \\ & n=487 \end{aligned}$	Allow or promote woody invasion of grasslands to enhance carbon sequestration in local locations where carbon storage increases with woody invasions	$\begin{aligned} & 1.12 \\ & (.94-1.31) \\ & n=107 \\ & l \end{aligned}$	$\begin{aligned} & 1.09 \\ & \text { (.86-1.33) } \\ & n=64 \\ & l \end{aligned}$	$\begin{aligned} & \hline .74 \\ & (.52-.95) \\ & n=68 \\ & I \end{aligned}$	$\begin{aligned} & .70 \\ & (.40-1.00) \\ & n=33 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.05 \\ & (.84-1.27) \\ & n=79 \\ & l \end{aligned}$	$\begin{aligned} & .99 \\ & (.82-1.15) \\ & n=136 \\ & I \end{aligned}$

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
$\begin{aligned} & \hline 70 \\ & .88 \\ & (.79-.98) \\ & n=501 \end{aligned}$	Purchase carbon "credits" to help offset your personal carbon footprint	$\begin{aligned} & .54 \\ & (.38-.70) \\ & n=106 \\ & I \end{aligned}$	$\begin{aligned} & \hline .76 \\ & (.54-1.04) \\ & n=67 \\ & I, I I, I I I \end{aligned}$	$\begin{aligned} & \hline .67 \\ & (.46-.88) \\ & n=70 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline .57 \\ & (.38-.76) \\ & n=35 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.06 \\ & (.78-1.34) \\ & n=80 \\ & I I, I I I \end{aligned}$	$\begin{aligned} & \hline 1.26 \\ & (1.06-1.46) \\ & n=143 \end{aligned}$ III
$\begin{aligned} & 71 \\ & .62 \\ & (.55-.68) \\ & n=512 \end{aligned}$	Enhance carbon sequestration in forests by planting exotic species	$\begin{aligned} & .66 \\ & (.52-.80) \\ & n=115 \\ & I, I I \end{aligned}$	$\begin{aligned} & .69 \\ & (.51-.87) \\ & n=70 \\ & I, I I \end{aligned}$	$\begin{aligned} & .38 \\ & (.24-.53) \\ & n=73 \\ & I \end{aligned}$	$\begin{aligned} & .39 \\ & (.19-.59) \\ & n=36 \\ & I \end{aligned}$	$\begin{aligned} & .77 \\ & (.58-.96) \\ & n=79 \\ & I I \end{aligned}$	$\begin{aligned} & .64 \\ & (.51-.77) \\ & n=139 \\ & I, I I \end{aligned}$
$\begin{aligned} & \hline 72 \\ & .44 \\ & (.38-.49) \\ & n=507 \end{aligned}$	Overlook issues such as biodiversity and habitat value to promote carbon sequestration	$\begin{aligned} & \hline .39 \\ & (.28-.51) \\ & n=112 \\ & I \end{aligned}$	$\begin{aligned} & \hline .48 \\ & (.35-.62) \\ & n=66 \\ & I \end{aligned}$	$\begin{aligned} & \hline .54 \\ & (.32-.77) \\ & n=72 \\ & I \end{aligned}$	$\begin{aligned} & \hline .28 \\ & (.12-.43) \\ & n=36 \\ & I \end{aligned}$	$\begin{aligned} & .42 \\ & (.29-.55) \\ & n=83 \\ & I \end{aligned}$	$\begin{aligned} & \hline .44 \\ & (.33-.56) \\ & n=132 \\ & I \end{aligned}$

