Supplemental Tables

Tables are designed to supplement text in Jones, C., and Lenart, M. (2014). Forestry Professionals and Extension Educators vs. Climate Change: Implications for Cooperative Extension Programming. *Journal of Extension* [On-line]. Accepted.

Analysis of Variance tests were used to determine which means are significantly different from all others ($\alpha = 0.05$), with Tukey HSD applied to address multiple comparisons. Green shading indicates greater confidence or willingness, red shading indicates lack of confidence or willingness, and yellow indicates a slight confidence or willingness to learn more. The Roman numerals represent statistical subsets; if a category does not include the same numeral as a different category, that means the populations measured responses that were statistically significantly different from each other (alpha = 0.05). See table legend below for an explanation of the color coding. Questions are shown as they were described in the survey, including the bold formatting.

Table Legend.

Row/ Overall	Question	Professional	Professional	Professional	Professional	Professional
Mean		Category	Category	Category	Category	Category
1	Group Mean	.99	1.49	1.99	2.99	3.99
2.00	(Mean interval:	Red:	Yellow:	Chartreuse:	Light Green:	Dark Green:
(.01-3.00)	lower-upper bound)	(.0199)	(1.00-1.49)	(1.50-1.99)	(2.00-2.49)	(2.50-3.99)
n = 576	n = # of respondents	n= 124	n=74	n=78	n=38	n= 87
	I, II, etc: Statistical subset	1	1,11	<i>II, III</i>	III, IV	IV

Supplemental Table 5. Mitigation.

Listed below are responses to questions on climate change adaptation measures. Responses range from:

- 0 = "not at all willing"
- 1 = "willing to learn more about it"
- 2 = "willing"
- 3 = "very willing"
- 4 = "extremely willing"

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
59	Thinning overly dense	3.45	3.26	3.56	3.14	3.22	3.15
3.30	stands to reduce the risk of	(3.32-3.58)	(3.08-3.44)	(3.42-3.71)	(2.78-3.50)	(2.99-3.45)	(2.98-3.32)
(3.22-3.38)	severe fire or stand-	n=115	n=70	n=73	n=36	n=77	n=141
n=512	destroying disturbance	-1, 11	1, II	П	1	1, 11	1, 11
60	Using forest biomass to	2.83	2.74	3.08	2.54	2.78	2.76
2.81	produce energy when	(2.66-3.01)	(2.48-3.00)	(2.87-3.29)	(2.18-2.91)	(2.54-3.02)	(2.58-2.93)
(2.72-2.90)	appropriate	n=115	n=69	n=73	n=35	n=81	n=143
n=516		-1, 11	1, II	П	1	I, II	1, 11
61	Change your personal	1.77	2.14	2.18	2.03	2.54	2.84
2.31	energy-consumption	(1.51-2.04)	(1.87-2.41)	(1.87-2.49)	(1.64-2.42)	(2.24-2.83)	(2.65-3.03)
(2.20-2.43)	habits to reduce your	n=114	n=72	n=73	n=36	n=84	n=143
n=522	carbon footprint	1	<i>I, II</i>	<i>I,</i> II	<i>I,</i> II	II, III	III
62	Enhance carbon	1.89	2.33	2.06	1.83	2.33	2.49
2.20	sequestration in wood and	(1.65-2.13)	(2.07-2.60)	(1.76-2.35)	(1.50-2.16)	(2.06-2.60)	(2.31-2.67)
(2.10-2.31)	aboveground biomass	n=114	n=69	n=72	n=36	n=76	n=143
n=510	0	1	1, 11	1, 11	1	1, 11	II
				·		·	
63	Retain carbon stored in	1.73	2.26	1.73	1.83	2.31	2.51
2.12	natural resources (wood,	(1.50-1.96)	(1.95-2.57)	(1.44-2.03)	(1.41-2.25)	(2.05-2.59)	(2.31-2.70)
(2.01-2.23)	fiber, soil) by protecting	n=112	n=69	n=71	n=35	n=75	n=140
n=502	existing conservation	1	1, 11	1	1	1, 11	11
<u> </u>	areas	4.65	2.00	2.07	4.70	2.45	2.44
64	Ennance carbon	1.65	2.00	2.07	1./6	2.15	2.44
2.06	sequestration in soils and	(1.43-1.88)	(1.73-2.27)	(1.80-2.34)	(1.43-2.10)	(1.89-2.41)	(2.25-2.63)
(1.96-2.16)	pelowground biomass	n=113	n=69	n=72	n=34	n=75	n=138
n=501		1	1, 11	1, 11	1	1, 11	П

Row/ Overall	Question	LM –	LM – Small	LM – Fed.	LM - State	Extension	Researcher
Mean		Private	Private Land-	agency	Agency	Educator	Mean
		company	owner Mean	Mean	Mean	Mean	
		Mean					
65	Retain carbon stored in	1.16	1.76	1.20	1.39	2.00	2.25
1.70	natural resources (wood,	(.92-1.40)	(1.43-2.09)	(.94-1.46)	(.97-1.82)	(1.72-2.28)	(2.04-2.47)
(1.58-1.81)	fiber, soil) by designating	n=110	n=67	n=71	n=33	n=74	n=139
n=494	additional conservation	1	1, 11, 111	1	1, 11	-11, 111	111
	areas						
66	Speed rotation of timber	1.65	1.46	1.60	1.42	1.58	1.57
1.57	harvesting in order to	(1.42-1.87)	(1.23-1.69)	(1.35-1.85)	(1.06-1.77)	(1.35-1.82)	(1.38-1.76)
(1.47-1.66)	promote the transfer of	n=116	n=70	n=73	n=36	n=79	n=141
n=515	carbon into forest products	1	1	1	1	1	1
67	Consider manipulating	1.10	1.44	1.25	1.11	1.30	1.52
1.31	local species within a forest	(.94-1.27)	(1.22-1.65)	(1.02-1.49)	(.85-1.38)	(1.08-1.52)	(1.36-1.68)
(1.23-1.40)	stand to favor species that	n=115	n=71	n=71	n=36	n=80	n=139
n=512	promote carbon	1	1	1	1	1	1
	sequestration						
68	Enhance carbon	1.01	1.10	1.06	1.11	1.34	1.24
1.15	sequestration by planting	(.86-1.16)	(.95-1.25)	(.87-1.24)	(.90-1.32)	(1.15-1.53)	(1.09-1.38)
(1.08-1.22)	"neo-native" species	n=109	n=70	n=72	n=36	n=79	n=139
n=505	expected to thrive because	1	1	1	1	1	1
	of climate change						
69	Allow or promote woody	1.12	1.09	.74	.70	1.05	.99
.99	invasion of grasslands to	(.94-1.31)	(.86-1.33)	(.5295)	(.40-1.00)	(.84-1.27)	(.82-1.15)
(.90-1.07)	enhance carbon	n=107	n=64	n=68	n=33	n=79	n=136
n=487	sequestration in local	1	1	1	1	1	1
	locations where carbon						
	storage increases with						
	woody invasions						

Row/ Overall Mean	Question	LM – Private company	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
	- - - - - - - - - -	wean				1.00	
70	Purchase carbon "credits"	.54	.76	.67	.57	1.06	1.26
.88	to help offset your	(.3870)	(.54-1.04)	(.4688)	(.3876)	(.78-1.34)	(1.06-1.46)
(.7998)	personal carbon footprint	n=106	n=67	n=70	n=35	n=80	n=143
n=501		1	I, II, III	I, II	I, II	II, III	<i>III</i>
71	Enhance carbon	.66	.69	.38	.39	.77	.64
.62	sequestration in forests by	(.5280)	(.5187)	(.2453)	(.1959)	(.5896)	(.5177)
(.5568)	planting exotic species	n=115	n=70	n=73	n=36	n=79	n=139
n=512		1, 11	1, 11	1	1	11	1, 11
72	Overlook issues such as	.39	.48	.54	.28	.42	.44
.44	biodiversity and habitat	(.2851)	(.3562)	(.3277)	(.1243)	(.2955)	(.3356)
(.3849)	value to promote carbon	n=112	n=66	n=72	n=36	n=83	n=132
n=507	sequestration	1	1	1	1	1	1