Supplemental Tables

Tables are designed to supplement text in Jones, C., and Lenart, M. (2014). Forestry Professionals and Extension Educators vs. Climate Change: Implications for Cooperative Extension Programming. Journal of Extension [On-line]. Accepted.

Analysis of Variance tests were used to determine which means are significantly different from all others ($\alpha=0.05$), with Tukey HSD applied to address multiple comparisons. Green shading indicates greater confidence or willingness, red shading indicates lack of confidence or willingness, and yellow indicates a slight confidence or willingness to learn more. The Roman numerals represent statistical subsets; if a category does not include the same numeral as a different category, that means the populations measured responses that were statistically significantly different from each other (alpha $=0.05$). See table legend below for an explanation of the color coding. Questions are shown as they were described in the survey, including the bold formatting.

Table Legend.

Row/ Overall Mean	Question	Professional Category				
$\begin{aligned} & \mathbf{1} \\ & 2.00 \\ & (.01-3.00) \\ & n=576 \end{aligned}$	Group Mean (Mean interval: lower-upper bound) $n=$ \# of respondents I, II, etc: Statistical subset	$\begin{aligned} & .99 \\ & \text { Red: } \\ & \text { (.01-.99) } \\ & n=124 \\ & 1 \end{aligned}$	1.49 Yellow: $\begin{aligned} & (1.00-1.49) \\ & n=74 \end{aligned}$ I,II	1.99 Chartreuse: $\begin{aligned} & \text { (1.50-1.99) } \\ & n=78 \\ & \text { II, III } \end{aligned}$	2.99 Light Green: $\begin{aligned} & \text { (2.00-2.49) } \\ & n=38 \\ & \text { III, IV } \end{aligned}$	3.99 Dark Green: (2.50-3.99) $\mathrm{n}=87$ IV

Supplemental Table 4. Adaptation.

Listed below are responses to questions on climate change adaptation measures. Responses range from:

- $0=$ "not at all willing"
- $1=$ "willing to learn more about it "
- $2=$ "willing"
- $3=$ "very willing"
- $4=$ "extremely willing"

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
$\begin{aligned} & 41 \\ & 3.25 \\ & (3.16-3.33) \\ & n=505 \end{aligned}$	Thin trees out of overly dense forests to reduce the risk of large-scale stand mortality from drought and/or wildfire	$\begin{aligned} & 3.29 \\ & (3.12-3.46) \\ & n=111 \\ & 1 \end{aligned}$	$\begin{aligned} & 3.13 \\ & (2.91-3.35) \\ & n=70 \end{aligned}$	$\begin{aligned} & 3.56 \\ & (3.40-3.72) \\ & n=75 \end{aligned}$	$\begin{aligned} & \hline 3.19 \\ & (2.83-3.55) \\ & n=36 \end{aligned}$	$\begin{aligned} & \hline 3.20 \\ & (2.99-3.41) \\ & n=74 \end{aligned}$	$\begin{aligned} & \hline 3.14 \\ & (2.95-3.32) \\ & n=139 \\ & I \end{aligned}$
$\begin{aligned} & \hline 42 \\ & 2.90 \\ & (2.80-3.00) \\ & n=495 \end{aligned}$	Conduct prescribed burns in forests in an effort to restore or retain natural fire cycles	$\begin{aligned} & 2.58 \\ & (2.34-2.83) \\ & n=110 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.40 \\ & (2.11-2.70) \\ & n=62 \\ & l \end{aligned}$	$\begin{aligned} & \hline 3.47 \\ & (3.28-3.65) \\ & n=75 \end{aligned}$ III	$\begin{aligned} & \hline 2.73 \\ & (2.41-3.05) \\ & n=37 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 3.00 \\ & (2.76-3.24) \\ & n=70 \\ & I I, I I I \end{aligned}$	$\begin{array}{\|l} \hline 3.07 \\ (2.91-3.24) \\ n=141 \\ I I, I I I \end{array}$
$\begin{aligned} & 43 \\ & 2.41 \\ & (2.31-2.51) \\ & n=504 \end{aligned}$	Conduct rapid removal programs on newly detected species considered invasive	$\begin{aligned} & 2.25 \\ & (2.03-2.48) \\ & n=110 \\ & I \end{aligned}$	$\begin{aligned} & 2.23 \\ & (1.99-2.46) \\ & n=71 \\ & I \end{aligned}$	$\begin{aligned} & 2.44 \\ & (2.20-2.67) \\ & n=73 \\ & I \end{aligned}$	$\begin{aligned} & 2.54 \\ & (2.18-2.91) \\ & n=35 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.59 \\ & (2.30-2.87) \\ & n=75 \\ & I \end{aligned}$	$\begin{aligned} & 2.47 \\ & (2.28-2.66) \\ & n=140 \\ & 1 \end{aligned}$
$\begin{aligned} & 44 \\ & 2.40 \\ & (2.30-2.51) \\ & n=513 \end{aligned}$	Foster connected landscapes, such as by retaining or gaining protection of riparian zones, to promote the natural migration of species	$\begin{aligned} & \hline 2.06 \\ & (1.83-2.29) \\ & n=113 \\ & I \end{aligned}$	$\begin{aligned} & 2.08 \\ & (1.79-2.38) \\ & n=71 \\ & I \end{aligned}$	$\begin{aligned} & 2.28 \\ & (2.00-2.56) \\ & n=72 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.54 \\ & (2.16-2.92) \\ & n=37 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.54 \\ & (2.28-2.80) \\ & n=81 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.79 \\ & (2.60-2.98) \\ & n=139 \\ & I I \end{aligned}$
$\begin{aligned} & \hline 45 \\ & 2.38 \\ & (2.28-2.48) \\ & n=509 \end{aligned}$	Create early-detection programs to detect new invasions of undesired exotic species	$\begin{aligned} & \hline 2.12 \\ & (1.91-2.34) \\ & n=113 \\ & ! \end{aligned}$	$\begin{aligned} & 2.25 \\ & (2.00-2.51) \\ & n=71 \\ & l \end{aligned}$	$\begin{aligned} & 2.33 \\ & \text { (2.05-2.62) } \\ & n=72 \\ & l \end{aligned}$	$\begin{aligned} & 2.37 \\ & (2.00-2.74) \\ & n=35 \\ & I \end{aligned}$	$\begin{aligned} & 2.65 \\ & \text { (2.39-2.92) } \\ & n=75 \\ & l \end{aligned}$	$\begin{aligned} & 2.52 \\ & (2.33-2.72) \\ & n=134 \\ & 1 \end{aligned}$
$\begin{aligned} & 46 \\ & 2.34 \\ & (2.23-2.45) \\ & n=465 \end{aligned}$	Construct fire breaks in key areas	$\begin{aligned} & 2.14 \\ & (1.87-2.41) \\ & n=99 \\ & l \end{aligned}$	$\begin{aligned} & 2.22 \\ & (1.95-2.50) \\ & n=63 \\ & I \end{aligned}$	$\begin{aligned} & 2.58 \\ & (2.33-2.82) \\ & n=69 \\ & l \end{aligned}$	$\begin{aligned} & 2.09 \\ & (1.73-2.45) \\ & n=33 \\ & l \end{aligned}$	$\begin{aligned} & 2.43 \\ & (2.14-2.72) \\ & n=67 \\ & l \end{aligned}$	$\begin{aligned} & 2.43 \\ & (2.22-2.63) \\ & n=134 \\ & I \end{aligned}$

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
$\begin{aligned} & 47 \\ & 2.25 \\ & (2.14-2.36) \\ & n=512 \end{aligned}$	Enlarge management areas or otherwise lower fragmentation of the landscape to promote the preservation of species	$\begin{array}{\|l\|} \hline 1.86 \\ (1.63-2.10) \\ n=111 \\ 1 \end{array}$	$\begin{aligned} & 2.01 \\ & (1.70-2.33) \\ & n=70 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.19 \\ & (1.90-2.48) \\ & n=74 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.32 \\ & (1.91-2.74) \\ & n=37 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.43 \\ & (2.17-2.70) \\ & n=81 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.58 \\ & (2.39-2.78) \\ & n=139 \\ & \text { II } \end{aligned}$
$\begin{aligned} & \hline 48 \\ & 1.77 \\ & (1.66-1.87) \\ & n=495 \end{aligned}$	Create local refugia for endangered species	$\begin{aligned} & \hline 1.43 \\ & (1.20-1.65) \\ & n=110 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.65 \\ & (1.35-1.94) \\ & n=68 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.85 \\ & (1.57-2.13) \\ & n=72 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.55 \\ & (1.26-1.83) \\ & n=33 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.86 \\ & (1.59-2.12) \\ & n=76 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.06 \\ & (1.87-2.25) \\ & n=136 \\ & \text { II } \end{aligned}$
$\begin{aligned} & \hline 49 \\ & 1.68 \\ & (1.59-1.77) \\ & n=508 \end{aligned}$	Consider adopting management practices even if they have a high level of uncertainty in some situations so that they could serve as experimental efforts	$\begin{aligned} & \hline 1.23 \\ & (1.06-1.39) \\ & n=110 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.31 \\ & (1.05-1.58) \\ & n=70 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.73 \\ & (1.48-1.99) \\ & n=71 \\ & \text { II } \end{aligned}$	$\begin{aligned} & \hline 1.53 \\ & (1.24-1.81) \\ & n=36 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.63 \\ & (1.41-1.84) \\ & n=80 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.26 \\ & (2.10-2.43) \\ & n=141 \end{aligned}$ III
$\begin{aligned} & 50 \\ & 1.65 \\ & (1.55-1.75) \\ & n=485 \end{aligned}$	Augment endangered species populations via introduction of captive-bred animals into the local area where they already exist.	$\begin{array}{\|l} 1.28 \\ (1.07-1.48) \\ n=111 \\ I \end{array}$	$\begin{aligned} & 1.62 \\ & (1.35-1.89) \\ & n=71 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.67 \\ & (1.41-1.93) \\ & n=67 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.45 \\ & (1.13-1.78) \\ & n=31 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.73 \\ & (1.47-2.00) \\ & n=71 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.98 \\ & (1.78-2.18) \\ & n=134 \\ & \text { II } \end{aligned}$
$\begin{aligned} & \hline 51 \\ & 1.55 \\ & (1.46-1.64) \\ & n=491 \end{aligned}$	Allow the invasion of "neonative" species - in effect, those that seem likely to be suited to changing climate conditions	$\begin{array}{\|l\|} \hline 1.35 \\ (1.17-1.53) \\ n=106 \\ l \end{array}$	$\begin{aligned} & \hline 1.44 \\ & \text { (1.19-1.69) } \\ & n=68 \\ & I \end{aligned}$	$\begin{aligned} & 1.50 \\ & (1.25-1.75) \\ & n=70 \\ & l \end{aligned}$	$\begin{aligned} & 1.39 \\ & (1.14-1.64) \\ & n=36 \\ & l \end{aligned}$	$\begin{aligned} & 1.64 \\ & (1.40-1.88) \\ & n=75 \\ & l \end{aligned}$	$\begin{aligned} & 1.77 \\ & (1.60-1.95) \\ & n=136 \\ & I \end{aligned}$

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean	
$\begin{aligned} & 52 \\ & 1.52 \\ & (1.43-1.60) \\ & n=493 \end{aligned}$	Relax genetic management guidelines to include the option of augmenting genetic diversity by collecting from adjacent seed zones or populations for restoration projects	$\begin{aligned} & 1.34 \\ & (1.17-1.51) \\ & n=112 \\ & I \end{aligned}$	$\begin{aligned} & 1.58 \\ & (1.31-1.85) \\ & n=67 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.44 \\ & (1.20-1.69) \\ & n=72 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.15 \\ & (.97-1.33) \\ & n=33 \\ & l \end{aligned}$	$\begin{aligned} & 1.40 \\ & (1.22-1.58) \\ & n=75 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.83 \\ & (1.65-2.00) \\ & n=134 \\ & \\| \end{aligned}$	
$\begin{aligned} & \hline 53 \\ & 1.51 \\ & (1.43-1.60) \\ & n=507 \end{aligned}$	Stock soils with seeds from plants outside of the standard range (i.e., those from environments suitable to future climate) - using different genotypes of the same species that exist locally	$\begin{aligned} & \hline 1.27 \\ & (1.11-1.44) \\ & n=113 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.54 \\ & (1.30-1.77) \\ & n=69 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.40 \\ & (1.15-1.65) \\ & n=73 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.33 \\ & (1.08-1.59) \\ & n=36 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.53 \\ & (1.33-1.74) \\ & n=79 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.80 \\ & (1.62-1.98) \\ & n=137 \\ & \\| \end{aligned}$	
$\begin{aligned} & \hline 54 \\ & 1.47 \\ & (1.39-1.56) \\ & n=505 \end{aligned}$	Make an effort to use redundancy (such as also planting on sites that are historically non-optimal for a specific species or community) when restoring a site following disturbance	$\begin{aligned} & \hline 1.16 \\ & (1.01-1.31) \\ & n=112 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.42 \\ & (1.19-1.65) \\ & n=71 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.54 \\ & (1.31-1.77) \\ & n=74 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.30 \\ & (1.02-1.59) \\ & n=33 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.42 \\ & (1.22-1.61) \\ & n=77 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.79 \\ & (1.63-1.95) \\ & n=138 \\ & \\| \end{aligned}$	
$\begin{aligned} & \hline 55 \\ & 1.39 \\ & (1.31-1.47) \\ & n=505 \end{aligned}$	Promote the expansion following major disturbance - of plants or animals into different locations that may be climatically suitable for them	$\begin{aligned} & \hline 1.18 \\ & (1.02-1.35) \\ & n=109 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.36 \\ & (1.14-1.58) \\ & n=72 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.39 \\ & (1.19-1.59) \\ & n=74 \\ & I \end{aligned}$	$\begin{aligned} & 1.31 \\ & (1.07-1.56) \\ & n=35 \\ & I \end{aligned}$	$\begin{aligned} & 1.41 \\ & (1.23-1.59) \\ & n=78 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.58 \\ & (1.41-1.75) \\ & n=137 \\ & I \end{aligned}$	

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
$\begin{aligned} & 56 \\ & 1.39 \\ & (1.31-1.47) \\ & n=502 \end{aligned}$	Consider "re-aligning" the system with different species if it has been pushed too far out of historic conditions - whether by manipulation or disturbance - when considering restoration	$\begin{aligned} & 1.32 \\ & (1.15-1.49) \\ & n=110 \\ & I \end{aligned}$	$\begin{aligned} & 1.25 \\ & (1.05-1.45) \\ & n=72 \\ & I \end{aligned}$	$\begin{aligned} & 1.31 \\ & (1.09-1.52) \\ & n=72 \\ & I \end{aligned}$	$\begin{aligned} & 1.37 \\ & (1.13-1.61) \\ & n=35 \\ & l \end{aligned}$	$\begin{aligned} & 1.37 \\ & (1.20-1.55) \\ & n=78 \\ & I \end{aligned}$	$\begin{aligned} & 1.59 \\ & (1.42-1.76) \\ & n=135 \\ & I \end{aligned}$
$\begin{aligned} & 57 \\ & 1.29 \\ & (1.21-1.38) \\ & n=495 \end{aligned}$	Promote the expansion of endangered species populations by introducing animals into a new area deemed suitable for them because of changed climate	$\begin{aligned} & .98 \\ & (.80-1.16) \\ & n=108 \\ & I \end{aligned}$	$\begin{aligned} & 1.25 \\ & (1.03-1.47) \\ & n=72 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.24 \\ & (1.03-1.46) \\ & n=70 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.22 \\ & (.93-1.50) \\ & n=32 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.34 \\ & (1.14-1.54) \\ & n=76 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.58 \\ & (1.41-1.76) \\ & n=137 \\ & \text { II } \end{aligned}$
$\begin{aligned} & \hline 58 \\ & 1.12 \\ & (1.04-1.20) \\ & n=503 \end{aligned}$	Stock soils with seeds from plants outside of the standard range (i.e., from environments more suitable to future climate) - using species that do not currently occur in the local area	$\begin{aligned} & .96 \\ & (.81-1.12) \\ & n=112 \\ & I \end{aligned}$	$\begin{aligned} & 1.15 \\ & (.94-1.37) \\ & n=71 \\ & l \end{aligned}$	$\begin{aligned} & 1.05 \\ & \text { (.84-1.27) } \\ & n=73 \\ & I \end{aligned}$	$\begin{aligned} & 1.00 \\ & (.78-1.22) \\ & n=35 \\ & l \end{aligned}$	$\begin{aligned} & \hline 1.14 \\ & (.94-1.34) \\ & n=76 \\ & l \end{aligned}$	$\begin{aligned} & \hline 1.28 \\ & (1.10-1.45) \\ & n=136 \\ & I \end{aligned}$

