Supplemental Tables

Tables are designed to supplement text in Jones, C., and Lenart, M. (2014). Forestry Professionals and Extension Educators vs. Climate Change: Implications for Cooperative Extension Programming. *Journal of Extension* [On-line]. Accepted.

Analysis of Variance tests were used to determine which means are significantly different from all others ($\alpha = 0.05$), with Tukey HSD applied to address multiple comparisons. Green shading indicates greater confidence or willingness, red shading indicates lack of confidence or willingness, and yellow indicates a slight confidence or willingness to learn more. The Roman numerals represent statistical subsets; if a category does not include the same numeral as a different category, that means the populations measured responses that were statistically significantly different from each other (alpha = 0.05). See table legend below for an explanation of the color coding. Questions are shown as they were described in the survey, including the bold formatting.

Table Legend.

Row/ Overall Mean	Question	Professional Category	Professional Category	Professional Category	Professional Category	Professional Category
1	Group Mean	.99	1.49	1.99	2.99	3.99
2.00	(Mean interval:	Red:	Yellow:	Chartreuse:	Light Green:	Dark Green:
(.01-3.00)	lower-upper bound)	(.0199)	(1.00-1.49)	(1.50-1.99)	(2.00-2.49)	(2.50-3.99)
n = 576	n = # of respondents	n= 124	n=74	n=78	n=38	n= 87
	I, II, etc: Statistical subset	1	I,II	II, III	III, IV	IV

Supplemental Table 3. Confidence in Climate Records.

Listed below are responses to questions regarding the amount of confidence the respondent has in various climate records. Responses range from:

- 0 = "not at all confident"
- 1 = "slightly confident"
- 2 = "confident"
- 3 = "very confident"
- 4 = "extremely confident"

Row/ Overall Mean	Question	LM - Private company Mean	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
28 2.57 (2.48-2.66) n=436	Instrumental records of precipitation for the site of the weather station.	2.44 (2.23-2.65) n=88	2.58 (2.33-2.82) n=57	2.52 (2.30-2.75) n=67	2.70 (2.34-3.06) n=30	2.46 (2.23-2.70) n=69	2.70 (2.53-2.86) n=125
29 2.54 (2.44-2.63) n=435	Instrumental records of temperature for the site of the weather stations.	2.28 (2.06-2.51) n=88 I	2.44 (2.15-2.72) n=57 I	2.58 (2.34-2.82) n=67	2.67 (2.28-3.05) n=30 I	2.42 (2.16-2.68) n=69	2.77 (2.60-2.93) n=124 I
30 2.38 (2.29-2.48) n=424	Tree ring records of fire cycles.	2.09 (1.89-2.30) n=88 I	2.27 (2.04-2.51) n=51	2.40 (2.15-2.65) n=65	2.47 (2.07-2.87) n=30 I	2.59 (2.39-2.79) n=66 I	2.50 (2.31-2.69) n=124 I
31 2.12 (2.02-2.21) n=407	Sediment records using charcoal to identify large wildfires from the distant past.	1.80 (1.59-2.00) n=84	2.15 (1.90-2.41) n=52 I	2.09 (1.86-2.32) n=66	2.28 (1.84-2.72) n=25 I	2.12 (1.85-2.38) n=60	2.31 (2.12-2.49) n=120 I
32 2.11 (2.02-2.21) n=420	Pollen records of past species distribution.	1.76 (1.54-1.97) n=86	1.94 (1.67-2.21) n=52 I, II	2.11 (1.89-2.32) n=66 I, II, III	2.28 (1.94-2.61) n=29 II, III	2.00 (1.77-2.23) n=65 I, II, III	2.46 (2.29-2.63) n=122 III

Row/ Overall Mean	Question	LM – Private company Mean	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
33	Ice core records of carbon dioxide levels (from air bubbles in the cores).	1.55	2.12	1.85	2.17	2.07	2.40
2.04		(1.29-1.81)	(1.81-2.42)	(1.57-2.13)	(1.78-2.55)	(1.77-2.37)	(2.22-2.59)
(1.93-2.15)		n=78	n=52	n=60	n=24	n=60	n=114
n=388		I	I, II	I, II	II	I, II	II
34	Tree ring records of precipitation.	1.64	2.09	2.06	2.17	2.17	2.14
2.02		(1.43-1.85)	(1.84-2.34)	(1.82-2.30)	(1.85-2.49)	(1.94-2.41)	(1.97-2.31)
(1.93-2.12)		n=88	n=53	n=66	n=29	n=64	n=125
n=425		I	I, II	I, II	II	II	I, II
35 1.83 (1.72-1.94) n=370	Ice core records of local temperature.	1.43 (1.18-1.69) n=76	1.93 (1.61-2.25) n=44 I, II	1.68 (1.42-1.94) n=59 I, II	1.91 (1.50-2.32) n=23 I, II	1.76 (1.48-2.05) n=59 I, II	2.17 (1.98-2.37) n=109 II
36	Sediment records using oxygen isotopes to identify long-term temperature changes on the planet.	1.36	2.09	1.62	1.90	1.79	2.06
1.80		(1.11-1.61)	(1.77-2.41)	(1.30-1.94)	(1.41-2.40)	(1.46-2.12)	(1.85-2.26)
(1.68-1.92)		n=72	n=45	n=50	n=21	n=52	n=106
n=346		I	II	I, II	I, II	I, II	II

Row/ Overall Mean	Question	LM – Private company Mean	LM – Small Private Land- owner Mean	LM – Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
37 1.57 (1.46-1.68) n=401	Tree ring records of temperature.	1.20 (.97-1.44) n=84	1.41 (1.08173) n=49 I, II	1.52 (1.30-1.77) n=65 I, II	1.63 (1.16-2.09) n=24 I, II	1.67 (1.42-1.92) n=61 I, II	1.85 (1.64-2.05) n=118 II
38 1.53 (1.43-1.62) n=434	Instrumental records of temperature when weather station data are extrapolated to provide continuous values across the landscape.	1.30 (1.07-1.52) n=88	1.32 (1.05-1.59) n=57	1.42 (1.20-1.65) n=66 I, II	1.34 (1.04-1.65) n=29 I, II	1.59 (1.36-1.82) n=69 I, II	1.85 (1.68-2.02) n=125 II
39 1.51 (1.42-1.60) n=433	Instrumental records of precipitation when weather station data are extrapolated to provide continuous values across the landscape.	1.28 (1.06-1.49) n=87 I	1.35 (1.09-1.61) n=57	1.44 (1.21-1.67) n=66 I	1.31 (1.00-1.62) n=29 I	1.66 (1.45-1.87) n=68 I	1.75 (1.56-1.93) n=126 I
40 1.21 (1.10-1.33) n=353	Tree ring records of streamflow.	.84 (.61-1.06) n=74 I	1.10 (.75-1.45) n=41	1.07 (.79-1.36) n=56	1.24 (.81-1.67) n=21 I	1.43 (1.14-1.71) n=54	1.48 (1.25-1.70) n=107