Supplemental Tables

Tables are designed to supplement text in Jones, C., and Lenart, M. (2014). Forestry Professionals and Extension Educators vs. Climate Change: Implications for Cooperative Extension Programming. Journal of Extension [On-line]. Accepted.

Analysis of Variance tests were used to determine which means are significantly different from all others ($\alpha=0.05$), with Tukey HSD applied to address multiple comparisons. Green shading indicates greater confidence or willingness, red shading indicates lack of confidence or willingness, and yellow indicates a slight confidence or willingness to learn more. The Roman numerals represent statistical subsets; if a category does not include the same numeral as a different category, that means the populations measured responses that were statistically significantly different from each other (alpha $=0.05$). See table legend below for an explanation of the color coding. Questions are shown as they were described in the survey, including the bold formatting.

Table Legend.

Row/ Overall Mean	Question	Professional Category				
$\begin{aligned} & 1 \\ & 2.00 \\ & (.01-3.00) \\ & n=576 \end{aligned}$	Group Mean (Mean interval: lower-upper bound) $n=$ \# of respondents I, II, etc: Statistical subset	$\begin{aligned} & .99 \\ & \text { Red: } \\ & \text { (.01-.99) } \\ & n=124 \\ & 1 \end{aligned}$	1.49 Yellow: $\begin{aligned} & \text { (1.00-1.49) } \\ & n=74 \\ & I, I I \end{aligned}$	1.99 Chartreuse: $\begin{aligned} & \text { (1.50-1.99) } \\ & n=78 \\ & I I, I I I \end{aligned}$	2.99 Light Green: $\begin{aligned} & \text { (2.00-2.49) } \\ & n=38 \\ & \text { III, IV } \end{aligned}$	3.99 Dark Green: $\begin{aligned} & (2.50-3.99) \\ & \mathrm{n}=87 \\ & \text { IV } \end{aligned}$

Supplemental Table 3. Confidence in Climate Records.

Listed below are responses to questions regarding the amount of confidence the respondent has in various climate records. Responses range from:

- $0=$ "not at all confident"
- $1=$ "slightly confident"
- $2=$ "confident"
- $3=$ "very confident"
- 4 = "extremely confident"

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
$\begin{aligned} & 28 \\ & 2.57 \\ & (2.48-2.66) \\ & n=436 \end{aligned}$	Instrumental records of precipitation for the site of the weather station.	$\begin{aligned} & 2.44 \\ & (2.23-2.65) \\ & n=88 \\ & l \end{aligned}$	$\begin{aligned} & 2.58 \\ & (2.33-2.82) \\ & n=57 \\ & I \end{aligned}$	$\begin{aligned} & 2.52 \\ & (2.30-2.75) \\ & n=67 \\ & I \end{aligned}$	$\begin{aligned} & 2.70 \\ & (2.34-3.06) \\ & n=30 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.46 \\ (2.23-2.70) \\ n=69 \\ I \end{array}$	$\begin{aligned} & 2.70 \\ & (2.53-2.86) \\ & n=125 \end{aligned}$
$\begin{aligned} & 29 \\ & 2.54 \\ & (2.44-2.63) \\ & n=435 \end{aligned}$	Instrumental records of temperature for the site of the weather stations.	$\begin{aligned} & 2.28 \\ & (2.06-2.51) \\ & n=88 \\ & l \end{aligned}$	$\begin{aligned} & 2.44 \\ & \text { (2.15-2.72) } \\ & n=57 \\ & l \end{aligned}$	$\begin{aligned} & 2.58 \\ & (2.34-2.82) \\ & n=67 \\ & l \end{aligned}$	$\begin{aligned} & 2.67 \\ & (2.28-3.05) \\ & n=30 \\ & l \end{aligned}$	$\begin{array}{\|l\|} \hline 2.42 \\ (2.16-2.68) \\ n=69 \\ I \end{array}$	$\begin{array}{\|l\|} \hline 2.77 \\ (2.60-2.93) \\ n=124 \\ 1 \end{array}$
$\begin{aligned} & 30 \\ & 2.38 \\ & (2.29-2.48) \\ & n=424 \end{aligned}$	Tree ring records of fire cycles.	$\begin{aligned} & 2.09 \\ & (1.89-2.30) \\ & n=88 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.27 \\ & (2.04-2.51) \\ & n=51 \\ & I \end{aligned}$	$\begin{aligned} & 2.40 \\ & (2.15-2.65) \\ & n=65 \\ & l \end{aligned}$	$\begin{aligned} & 2.47 \\ & (2.07-2.87) \\ & n=30 \\ & l \end{aligned}$	$\begin{aligned} & 2.59 \\ & (2.39-2.79) \\ & n=66 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.50 \\ & (2.31-2.69) \\ & n=124 \\ & 1 \end{aligned}$
$\begin{aligned} & 31 \\ & 2.12 \\ & (2.02-2.21) \\ & n=407 \end{aligned}$	Sediment records using charcoal to identify large wildfires from the distant past.	$\begin{aligned} & 1.80 \\ & (1.59-2.00) \\ & n=84 \\ & l \end{aligned}$	$\begin{aligned} & 2.15 \\ & (1.90-2.41) \\ & n=52 \\ & I \end{aligned}$	$\begin{aligned} & 2.09 \\ & (1.86-2.32) \\ & n=66 \\ & I \end{aligned}$	$\begin{aligned} & 2.28 \\ & (1.84-2.72) \\ & n=25 \\ & I \end{aligned}$	$\begin{aligned} & 2.12 \\ & (1.85-2.38) \\ & n=60 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.31 \\ & (2.12-2.49) \\ & n=120 \\ & l \end{aligned}$
$\begin{aligned} & 32 \\ & 2.11 \\ & (2.02-2.21) \\ & n=420 \end{aligned}$	Pollen records of past species distribution.	$\begin{aligned} & 1.76 \\ & (1.54-1.97) \\ & n=86 \\ & I \end{aligned}$	$\begin{aligned} & 1.94 \\ & (1.67-2.21) \\ & n=52 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.11 \\ & (1.89-2.32) \\ & n=66 \\ & I, I I, I I I \end{aligned}$	$\begin{aligned} & 2.28 \\ & (1.94-2.61) \\ & n=29 \\ & \text { II, III } \end{aligned}$	$\begin{array}{\|l\|} \hline 2.00 \\ (1.77-2.23) \\ n=65 \\ I, I I, I I I \end{array}$	$\begin{array}{\|l\|} \hline 2.46 \\ (2.29-2.63) \\ n=122 \\ \text { III } \\ \hline \end{array}$

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
$\begin{aligned} & 33 \\ & 2.04 \\ & (1.93-2.15) \\ & n=388 \end{aligned}$	Ice core records of carbon dioxide levels (from air bubbles in the cores).	$\begin{aligned} & 1.55 \\ & (1.29-1.81) \\ & n=78 \\ & l \end{aligned}$	$\begin{aligned} & 2.12 \\ & (1.81-2.42) \\ & n=52 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.85 \\ & (1.57-2.13) \\ & n=60 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.17 \\ & (1.78-2.55) \\ & n=24 \\ & I \prime \end{aligned}$	$\begin{aligned} & 2.07 \\ & (1.77-2.37) \\ & n=60 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.40 \\ & (2.22-2.59) \\ & n=114 \\ & I I \end{aligned}$
$\begin{aligned} & \hline 34 \\ & 2.02 \\ & (1.93-2.12) \\ & n=425 \end{aligned}$	Tree ring records of precipitation.	$\begin{aligned} & 1.64 \\ & (1.43-1.85) \\ & n=88 \\ & l \end{aligned}$	$\begin{aligned} & \hline 2.09 \\ & (1.84-2.34) \\ & n=53 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.06 \\ & (1.82-2.30) \\ & n=66 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.17 \\ & (1.85-2.49) \\ & n=29 \\ & I \prime \end{aligned}$	$\begin{aligned} & \hline 2.17 \\ & (1.94-2.41) \\ & n=64 \\ & I \prime \end{aligned}$	$\begin{aligned} & \hline 2.14 \\ & (1.97-2.31) \\ & n=125 \\ & I, I I \end{aligned}$
$\begin{aligned} & 35 \\ & 1.83 \\ & (1.72-1.94) \\ & n=370 \end{aligned}$	Ice core records of local temperature.	$\begin{aligned} & 1.43 \\ & \text { (1.18-1.69) } \\ & n=76 \\ & I \end{aligned}$	$\begin{aligned} & 1.93 \\ & (1.61-2.25) \\ & n=44 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.68 \\ & (1.42-1.94) \\ & n=59 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.91 \\ & (1.50-2.32) \\ & n=23 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.76 \\ & (1.48-2.05) \\ & n=59 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.17 \\ & (1.98-2.37) \\ & n=109 \\ & I I \end{aligned}$
$\begin{aligned} & 36 \\ & 1.80 \\ & (1.68-1.92) \\ & n=346 \end{aligned}$	Sediment records using oxygen isotopes to identify long-term temperature changes on the planet.	$\begin{aligned} & 1.36 \\ & (1.11-1.61) \\ & n=72 \\ & l \end{aligned}$	$\begin{aligned} & 2.09 \\ & (1.77-2.41) \\ & n=45 \\ & \text { II } \end{aligned}$	$\begin{aligned} & 1.62 \\ & (1.30-1.94) \\ & n=50 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.90 \\ & (1.41-2.40) \\ & n=21 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.79 \\ & (1.46-2.12) \\ & n=52 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.06 \\ & (1.85-2.26) \\ & n=106 \\ & I I \end{aligned}$

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
$\begin{aligned} & 37 \\ & 1.57 \\ & (1.46-1.68) \\ & n=401 \end{aligned}$	Tree ring records of temperature.	$\begin{aligned} & 1.20 \\ & (.97-1.44) \\ & n=84 \\ & l \end{aligned}$	$\begin{aligned} & \hline 1.41 \\ & (1.08-.173) \\ & n=49 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.52 \\ & (1.30-1.77) \\ & n=65 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.63 \\ & (1.16-2.09) \\ & n=24 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.67 \\ & (1.42-1.92) \\ & n=61 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.85 \\ & (1.64-2.05) \\ & n=118 \\ & \text { II } \end{aligned}$
$\begin{aligned} & \hline 38 \\ & 1.53 \\ & (1.43-1.62) \\ & n=434 \end{aligned}$	Instrumental records of temperature when weather station data are extrapolated to provide continuous values across the landscape.	$\begin{aligned} & 1.30 \\ & (1.07-1.52) \\ & n=88 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.32 \\ & (1.05-1.59) \\ & n=57 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.42 \\ & (1.20-1.65) \\ & n=66 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.34 \\ & (1.04-1.65) \\ & n=29 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.59 \\ & (1.36-1.82) \\ & n=69 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.85 \\ & (1.68-2.02) \\ & n=125 \\ & I \prime \end{aligned}$
$\begin{aligned} & \hline 39 \\ & 1.51 \\ & (1.42-1.60) \\ & n=433 \end{aligned}$	Instrumental records of precipitation when weather station data are extrapolated to provide continuous values across the landscape.	$\begin{aligned} & \hline 1.28 \\ & (1.06-1.49) \\ & n=87 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.35 \\ & (1.09-1.61) \\ & n=57 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.44 \\ & (1.21-1.67) \\ & n=66 \\ & I \end{aligned}$	$\begin{aligned} & 1.31 \\ & (1.00-1.62) \\ & n=29 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.66 \\ & (1.45-1.87) \\ & n=68 \\ & I \end{aligned}$	$\begin{aligned} & 1.75 \\ & (1.56-1.93) \\ & n=126 \\ & I \end{aligned}$
$\begin{aligned} & \hline 40 \\ & 1.21 \\ & (1.10-1.33) \\ & n=353 \end{aligned}$	Tree ring records of streamflow.	$\begin{aligned} & \hline .84 \\ & (.61-1.06) \\ & n=74 \\ & I \end{aligned}$	$\begin{aligned} & 1.10 \\ & (.75-1.45) \\ & n=41 \\ & l \end{aligned}$	$\begin{aligned} & 1.07 \\ & (.79-1.36) \\ & n=56 \\ & l \end{aligned}$	$\begin{aligned} & 1.24 \\ & (.81-1.67) \\ & n=21 \\ & l \end{aligned}$	$\begin{aligned} & \hline 1.43 \\ & (1.14-1.71) \\ & n=54 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.48 \\ & (1.25-1.70) \\ & n=107 \\ & I \end{aligned}$

