Supplemental Tables

Tables are designed to supplement text in Jones, C., and Lenart, M. (2014). Forestry Professionals and Extension Educators vs. Climate Change: Implications for Cooperative Extension Programming. Journal of Extension [On-line]. Accepted.

Analysis of Variance tests were used to determine which means are significantly different from all others ($\alpha=0.05$), with Tukey HSD applied to address multiple comparisons. Green shading indicates greater confidence or willingness, red shading indicates lack of confidence or willingness, and yellow indicates a slight confidence or willingness to learn more. The Roman numerals represent statistical subsets; if a category does not include the same numeral as a different category, that means the populations measured responses that were statistically significantly different from each other (alpha $=0.05$). See table legend below for an explanation of the color coding. Questions are shown as they were described in the survey, including the bold formatting.

Table Legend.

Row/ Overall Mean	Question	Professional Category				
$\begin{aligned} & 1 \\ & 2.00 \\ & (.01-3.00) \\ & n=576 \end{aligned}$	Group Mean (Mean interval: lower-upper bound) $n=$ \# of respondents I, II, etc: Statistical subset	$\begin{aligned} & .99 \\ & \text { Red: } \\ & \text { (.01-.99) } \\ & n=124 \\ & 1 \end{aligned}$	1.49 Yellow: $\begin{aligned} & \text { (1.00-1.49) } \\ & n=74 \\ & I, I I \end{aligned}$	1.99 Chartreuse: $\begin{aligned} & \text { (1.50-1.99) } \\ & n=78 \\ & I I, I I I \end{aligned}$	2.99 Light Green: $\begin{aligned} & \text { (2.00-2.49) } \\ & n=38 \\ & \text { III, IV } \end{aligned}$	3.99 Dark Green: $\begin{aligned} & (2.50-3.99) \\ & \mathrm{n}=87 \\ & \text { IV } \end{aligned}$

Supplemental Table 2. Climate Information Needs (Temperature and Precipitation Records).

Listed below are responses to questions how important is it to you to have more information on the following for your management area on climate change adaptation measures. Responses range from:

- $0=$ "not at all important"
- $1=$ "slightly important"
- $2=$ "important"
- 3 = "very important"
- 4 = "extremely important"

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean	
$\begin{aligned} & 9 \\ & 2.43 \\ & (2.33-2.54) \\ & n=410 \end{aligned}$	How important is it to have more information on how water resources are likely to be affected in your management area?	$\begin{aligned} & \hline 2.00 \\ & (1.76-2.24) \\ & n=84 \\ & I \end{aligned}$	$\begin{aligned} & \hline 2.16 \\ & (1.89-2.44) \\ & n=55 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.65 \\ & (2.42-2.88) \\ & n=65 \\ & I \prime \end{aligned}$	$\begin{aligned} & \hline 2.43 \\ & (2.07-2.79) \\ & n=28 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.65 \\ & (2.36-2.93) \\ & n=68 \\ & \text { II } \end{aligned}$	$\begin{aligned} & 2.65 \\ & (2.46-2.83) \\ & n=110 \\ & I I \end{aligned}$	
$\begin{aligned} & 10 \\ & 2.31 \\ & (2.21-2.41) \\ & n=416 \end{aligned}$	How important is it to have more information on the climatic tolerance of specific plant species of interest to you?	$\begin{aligned} & 1.89 \\ & (1.65-2.12) \\ & n=87 \\ & I \end{aligned}$	$\begin{aligned} & 2.22 \\ & (1.98-2.45) \\ & n=55 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.23 \\ & (1.96-2.50) \\ & n=64 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.32 \\ & (2.00-2.64) \\ & n=28 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.57 \\ & (2.31-2.81) \\ & n=68 \\ & I I \end{aligned}$	$\begin{aligned} & 2.54 \\ & (2.36-2.73) \\ & n=114 \\ & I I \end{aligned}$	
$\begin{aligned} & 11 \\ & 2.14 \\ & (2.05-2.24) \\ & n=405 \end{aligned}$	Records of changes in average precipitation from weather stations.	$\begin{aligned} & 1.80 \\ & (1.58-2.02) \\ & n=85 \\ & l \end{aligned}$	$\begin{aligned} & 2.00 \\ & (1.74-2.26) \\ & n=50 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.09 \\ & (1.85-2.33) \\ & n=65 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.08 \\ & (1.78-2.38) \\ & n=26 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.25 \\ & \text { (2.01-2.49) } \\ & n=68 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.45 \\ & (2.28-2.62) \\ & n=111 \\ & \\| \end{aligned}$	
$\begin{aligned} & 12 \\ & 2.07 \\ & (1.96-2.17) \\ & n=404 \end{aligned}$	Records of changes in precipitation extremes from weather stations.	$\begin{aligned} & 1.61 \\ & (1.39-1.84) \\ & n=85 \\ & l \end{aligned}$	$\begin{aligned} & 1.80 \\ & (1.53-2.06) \\ & n=49 \\ & I \end{aligned}$	$\begin{aligned} & 2.06 \\ & (1.81-2.31) \\ & n=64 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.00 \\ & (1.68-2.32) \\ & n=26 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.13 \\ & (1.87-2.39) \\ & n=69 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.51 \\ & (2.32-2.71) \\ & n=111 \\ & I I \end{aligned}$	
$\begin{aligned} & 13 \\ & 2.03 \\ & (1.93-2.14) \\ & n=414 \end{aligned}$	How important is it to have more information on how rising carbon dioxide levels affect specific plant species of interest to you?	$\begin{aligned} & 1.66 \\ & (1.43-1.88) \\ & n=87 \\ & l \end{aligned}$	$\begin{aligned} & 2.13 \\ & (1.88-2.38) \\ & n=54 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.83 \\ & (1.56-2.10) \\ & n=65 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.04 \\ & (1.73-2.34) \\ & n=28 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.28 \\ & (2.02-2.55) \\ & n=67 \\ & I I \end{aligned}$	$\begin{aligned} & 2.25 \\ & (2.05-2.45) \\ & n=113 \\ & \text { II } \end{aligned}$	

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
$\begin{aligned} & 14 \\ & 2.03 \\ & (1.92-2.3) \\ & n=399 \end{aligned}$	Records of changes in types of precipitation from weather stations.	$\begin{aligned} & 1.61 \\ & (1.37-1.85) \\ & n=85 \\ & I \end{aligned}$	$\begin{aligned} & 1.67 \\ & (1.42-1.93) \\ & n=49 \\ & I \end{aligned}$	$\begin{aligned} & \hline 2.05 \\ & (1.81-2.28) \\ & n=64 \\ & I, I I, I I I \end{aligned}$	$\begin{aligned} & \hline 1.85 \\ & (1.46-2.24) \\ & n=26 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.22 \\ & (1.97-2.47) \\ & n=68 \\ & \text { II, III } \end{aligned}$	$\begin{aligned} & \hline 2.42 \\ & (2.24-2.60) \\ & n=107 \\ & \text { III } \end{aligned}$
$\begin{aligned} & 15 \\ & 2.00 \\ & (1.89-2.10) \\ & n=402 \end{aligned}$	How important is it to have more information on the climatic tolerance of specific animal species of interest to you?	$\begin{aligned} & \hline 1.54 \\ & (1.31-1.77) \\ & n=84 \\ & I \end{aligned}$	$\begin{aligned} & \hline 2.00 \\ & (1.72-2.28) \\ & n=55 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.95 \\ & (1.70-2.20) \\ & n=63 \\ & I, 11 \end{aligned}$	$\begin{aligned} & \hline 2.00 \\ & (1.67-2.33) \\ & n=28 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.22 \\ & (1.94-2.50) \\ & n=68 \\ & I I \end{aligned}$	$\begin{aligned} & \hline 2.24 \\ & (2.03-2.45) \\ & n=104 \\ & I I \end{aligned}$
$\begin{aligned} & 16 \\ & 1.99 \\ & (1.89-2.10) \\ & n=404 \end{aligned}$	How important is it to have more information on how elevation and other topographic influences affect the microclimate of your management area?	$\begin{aligned} & 1.57 \\ & (1.33-1.82) \\ & n=84 \\ & I \end{aligned}$	$\begin{aligned} & 1.70 \\ & (1.43-1.98) \\ & n=54 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.22 \\ & (1.96-2.48) \\ & n=63 \\ & \text { II } \end{aligned}$	$\begin{aligned} & 2.04 \\ & (1.71-2.36) \\ & n=28 \\ & I, I I \end{aligned}$	$\begin{aligned} & 2.15 \\ & (1.90-2.39) \\ & n=68 \\ & \text { II } \end{aligned}$	$\begin{aligned} & 2.22 \\ & (2.03-2.42) \\ & n=107 \\ & I I \end{aligned}$
$\begin{aligned} & 17 \\ & 1.97 \\ & (1.87-2.08) \\ & n=408 \end{aligned}$	Records of temperature extremes from weather stations.	$\begin{aligned} & \hline 1.47 \\ & (1.23-1.70) \\ & n=86 \\ & I \end{aligned}$	$\begin{array}{\|l\|} \hline 1.58 \\ (1.29-1.87) \\ n=50 \\ l \end{array}$	$\begin{aligned} & \hline 1.97 \\ & (1.73-2.21) \\ & n=66 \\ & I, I I, I I I \end{aligned}$	$\begin{aligned} & \hline 1.88 \\ & (1.58-2.19) \\ & n=26 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.13 \\ & (1.88-2.38) \\ & n=68 \\ & I I, I I I \end{aligned}$	$\begin{aligned} & \hline 2.46 \\ & (2.28-2.65) \\ & n=112 \\ & I I I \end{aligned}$
$\begin{aligned} & 18 \\ & 1.93 \\ & (1.83-2.03) \\ & n=407 \end{aligned}$	Records of monthly average temperature from weather stations.	$\begin{aligned} & \hline 1.41 \\ & (1.17-1.64) \\ & n=86 \\ & I \end{aligned}$	$\begin{aligned} & \hline 1.67 \\ & (1.40-1.93) \\ & n=51 \\ & 1,11 \end{aligned}$	$\begin{aligned} & \hline 1.94 \\ & (1.69-2.19) \\ & n=66 \\ & I, I I, I I I \end{aligned}$	$\begin{aligned} & \hline 1.70 \\ & (1.40-2.01) \\ & n=27 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 2.18 \\ & (1.96-2.41) \\ & n=65 \\ & \text { II, III } \end{aligned}$	$\begin{aligned} & \hline 2.35 \\ & (2.16-2.54) \\ & n=112 \end{aligned}$ III

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean
$\begin{aligned} & 19 \\ & 1.74 \\ & (1.63-1.84) \\ & n=405 \end{aligned}$	Projections of changes in average precipitation (monthly mean, seasonal changes) based on models.	$\begin{array}{\|l\|} \hline 1.21 \\ (1.00-1.42) \\ n=86 \\ 1 \end{array}$	$\begin{aligned} & 1.65 \\ & (1.36-1.94) \\ & n=51 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.69 \\ & (1.43-1.96) \\ & n=65 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.73 \\ & (1.38-2.08) \\ & n=26 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.90 \\ & (1.64-2.16) \\ & n=68 \\ & I I \end{aligned}$	$\begin{aligned} & \hline 2.14 \\ & (1.93-2.34) \\ & n=109 \\ & I \prime \end{aligned}$
$\begin{aligned} & \hline 20 \\ & 1.70 \\ & (1.59-1.81) \\ & n=397 \end{aligned}$	Longer proxy records of changes in precipitation extremes based on tree rings, geomorphological evidence and other natural archives.	$\begin{aligned} & 1.11 \\ & (.90-1.32) \\ & n=83 \\ & l \end{aligned}$	$\begin{aligned} & 1.55 \\ & (1.24-1.86) \\ & n=49 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.78 \\ & (1.52-2.04) \\ & n=63 \\ & I I, I I I \end{aligned}$	$\begin{aligned} & \hline 1.42 \\ & (1.12-1.73) \\ & n=26 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.87 \\ & (1.62-2.11) \\ & n=67 \\ & I I, I I I \end{aligned}$	$\begin{aligned} & 2.15 \\ & (1.92-2.37) \\ & n=109 \\ & \text { III } \end{aligned}$
$\begin{aligned} & 21 \\ & 1.69 \\ & (1.58-1.80) \\ & n=396 \end{aligned}$	Longer proxy records of changes in average precipitation from tree rings, sediment cores and other natural archives.	$\begin{aligned} & 1.12 \\ & \text { (.90-1.34) } \\ & n=83 \\ & l \end{aligned}$	$\begin{aligned} & 1.52 \\ & (1.20-1.84) \\ & n=48 \\ & I, I I, I I I \end{aligned}$	$\begin{aligned} & 1.70 \\ & (1.43-1.96) \\ & n=63 \\ & \text { II, III } \end{aligned}$	$\begin{aligned} & 1.44 \\ & (1.08-1.80) \\ & n=25 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.97 \\ & (1.72-2.22) \\ & n=67 \\ & \text { II, III } \end{aligned}$	$\begin{aligned} & 2.08 \\ & (1.88-2.28) \\ & n=110 \\ & \text { III } \end{aligned}$
$\begin{aligned} & 22 \\ & 1.68 \\ & (1.57-1.79) \\ & n=406 \end{aligned}$	Projections of changes in precipitation extremes (intensity and duration of extreme events such as drought or flood) based on models.	$\begin{aligned} & 1.08 \\ & (.87-1.30) \\ & n=86 \\ & l \end{aligned}$	$\begin{aligned} & 1.52 \\ & (1.25-1.79) \\ & n=52 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.72 \\ & (1.45-1.99) \\ & n=64 \\ & \text { II } \end{aligned}$	$\begin{aligned} & 1.69 \\ & (1.35-2.03) \\ & n=26 \\ & I I \end{aligned}$	$\begin{aligned} & 1.84 \\ & (1.59-2.09) \\ & n=68 \\ & I / \end{aligned}$	$\begin{aligned} & 2.10 \\ & (1.87-2.33) \\ & n=110 \\ & I I \end{aligned}$
$\begin{aligned} & 23 \\ & 1.66 \\ & (1.55-1.77) \\ & n=408 \end{aligned}$	Projections of temperature extremes (highs, lows, heat waves, frost/thaws) based on models.	$\begin{aligned} & 1.06 \\ & (.84-1.27) \\ & n=86 \\ & l \end{aligned}$	$\begin{aligned} & \hline 1.31 \\ & (1.06-1.57) \\ & n=51 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.59 \\ & (1.31-1.87) \\ & n=66 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.62 \\ & (1.25-1.98) \\ & n=26 \\ & I, I I, I I I \end{aligned}$	$\begin{aligned} & 1.88 \\ & (1.61-2.15) \\ & n=67 \\ & \text { II, III } \end{aligned}$	$\begin{aligned} & 2.19 \\ & (1.97-2.40) \\ & n=112 \\ & \text { III } \end{aligned}$

Row/ Overall Mean	Question	LM - Private company Mean	LM - Small Private Landowner Mean	LM - Fed. agency Mean	LM - State Agency Mean	Extension Educator Mean	Researcher Mean	
$\begin{aligned} & 24 \\ & 1.65 \\ & (1.54-1.77) \\ & n=401 \end{aligned}$	Longer Proxy records of temperature extremes based on tree rings and sediment cores and other natural archives.	$\begin{aligned} & 1.06 \\ & (.83-1.29) \\ & n=84 \\ & I \end{aligned}$	$\begin{aligned} & 1.52 \\ & (1.19-1.85) \\ & n=50 \\ & I, I I, I I I \end{aligned}$	$\begin{aligned} & 1.71 \\ & (1.45-1.98) \\ & n=63 \\ & I I, I I \prime \end{aligned}$	$\begin{aligned} & 1.23 \\ & (.90-1.56) \\ & n=26 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.87 \\ & (1.62-2.11) \\ & n=68 \\ & \text { III } \end{aligned}$	$\begin{aligned} & 2.10 \\ & (1.87-2.33) \\ & n=110 \\ & I I I \end{aligned}$	
$\begin{aligned} & 25 \\ & 1.65 \\ & (1.53-1.76) \\ & n=399 \end{aligned}$	Projections of changes in types of precipitation (rain vs. snow, likelihood of hail) based on models.	$\begin{aligned} & 1.12 \\ & (.89-1.34) \\ & n=86 \\ & l \end{aligned}$	$\begin{aligned} & 1.32 \\ & (1.07-1.57) \\ & n=50 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.81 \\ & (1.53-2.09) \\ & n=63 \\ & I I, I I I \end{aligned}$	$\begin{aligned} & \hline 1.50 \\ & (1.12-1.88) \\ & n=26 \\ & I, I I, I I I \end{aligned}$	$\begin{aligned} & 1.78 \\ & (1.50-2.05) \\ & n=67 \\ & I I, I I I \end{aligned}$	$\begin{aligned} & 2.08 \\ & (1.85-2.32) \\ & n=107 \end{aligned}$ III	
$\begin{aligned} & 26 \\ & 1.62 \\ & (1.51-1.72) \\ & n=398 \end{aligned}$	Longer proxy records of monthly average temperature based on tree rings, sediment cores and natural archives.	$\begin{aligned} & 1.08 \\ & (.86-1.31) \\ & n=85 \\ & l \end{aligned}$	$\begin{aligned} & 1.35 \\ & (1.06-1.65) \\ & n=48 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.56 \\ & (1.31-1.82) \\ & n=64 \\ & I, I I, I I I \end{aligned}$	$\begin{array}{\|l\|} \hline 1.15 \\ (.82-1.49) \\ n=26 \\ 1 \end{array}$	$\begin{aligned} & 1.92 \\ & (1.67-2.18) \\ & n=65 \\ & \text { II, III } \end{aligned}$	$\begin{aligned} & 2.10 \\ & (1.90-2.30) \\ & n=110 \\ & \text { III } \end{aligned}$	
$\begin{aligned} & 27 \\ & 1.54 \\ & (1.44-1.64) \\ & n=406 \end{aligned}$	Projections of monthly average temperature (mean, maximum, minimum) based on models.	$\begin{aligned} & 1.07 \\ & (.86-1.28) \\ & n=87 \\ & l \end{aligned}$	$\begin{aligned} & 1.37 \\ & (1.14-1.59) \\ & n=52 \\ & I, I I \end{aligned}$	$\begin{aligned} & \hline 1.51 \\ & (1.25-1.76) \\ & n=65 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.46 \\ & (1.13-1.79) \\ & n=26 \\ & I, I I \end{aligned}$	$\begin{aligned} & 1.77 \\ & (1.53-2.01) \\ & n=65 \\ & \text { II } \end{aligned}$	$\begin{aligned} & 1.89 \\ & (1.69-2.10) \\ & n=111 \\ & \\| \end{aligned}$	

